Graph Algorithms

Chapter 9 Overview

- Definitions
- Representation
- Topological Sort
- Graph Matching (for Program 3)
- Shortest Path Algorithms
- Network Flow Problems
- Minimum Spanning Trees
- Depth-First and Breadth-First Search
- NP-Completeness

Graphs and Digraphs

A graph is a pair \(G = (V,E) \) where

- \(V \) is a set of vertices (or nodes)
- \(E \) is a set of edges (or arcs)

Example:

\[V = \{ a, b, c, d \} \]
\[E = \{ (a,b), (b,a), (a,c) \} \]

This graph represents a binary relation that is not symmetric.

More Examples

Undirected Graph

Lynnwood

Woodinville

Seattle

Tacoma

Bellevue

I5

I405

I405

I5

M126

142

143

321

322

326

373

415

EE562

Directed Graph

This graph represents a binary relation that is not symmetric.

Paths through Graphs

A path in a graph is a sequence of vertices \(v_1, v_2, \ldots, v_N \) such that \((v_i,v_{i+1}) \in E \) for \(1 \leq i < N \).

The length of the path is \(N-1 \), the number of edges on the path.

A path from a node to itself with no repeated edges is a cycle.

What are the cycles of this graph?
What are all the paths from \(a \) to \(f \)?
Paths through Digraphs

A path in a digraph is a sequence of vertices \(w_1, w_2, \ldots, w_N \) such that \((w_i, w_{i+1}) \) is in \(E \) for \(1 \leq i < N \).

The only difference is moving along directed edges in the proper direction.

What are the cycles of this digraph?
What are all the paths from \(a \) to \(f \)?

This is an acyclic digraph.

Graph Representations

- \(N \times N \) Adjacency Matrix for \(N \) node graph

 Digraphs:
 \[
 A_{i,j} =
 \begin{cases}
 1 & \text{if there is an arc from node } i \text{ to node } j \\
 0 & \text{otherwise}
 \end{cases}
 \]

Note: since \(A_{i,j} = 1 \) if \(A_{j,i} = 1 \), we only need to store half the matrix.

2. Linked Representation: Adjacency Lists

- \(N \) element array of lists

 \(V[i] \) points to a list of nodes that are adjacent to node \(i \).

 For digraphs, this is usually the list of nodes reachable by following one arc out of node \(i \).

 But, we can have another set of lists for nodes whose arcs go into node \(i \).

What does this structure tell us for a graph?
For a digraph?

Topological Sort

Given an acyclic digraph \(G \), where

\((N_i, N_j) \in E \) means that \(N_i \) precedes \(N_j \)

Find an ordering of the nodes \(N_1, N_2, N_3, \ldots, N_n \)
so that \(N_1 \prec N_2 \prec N_3 \prec \ldots \prec N_n \).

Find an ordering in which all these courses can be taken, satisfying their prerequisites.
Complexity of Topological Sort

Assuming the adjacency list representation,
- The indegree of each vertex is computed in an initialization step. \(|V| \)
- Each node will go into the queue and come out exactly once. \(|V| \)
- Each edge will be examined once (in the for loop when its from-node is processed). \(|E| \)

So the complexity is \(O(|V| + |E|) \).

Graph Matching

Input: 2 digraphs \(G_1 = (V_1,E_1), G_2 = (V_2,E_2) \)

Questions to ask:
- Are \(G_1 \) and \(G_2 \) isomorphic?
- Is \(G_1 \) isomorphic to a subgraph of \(G_2 \)?
- How similar is \(G_1 \) to \(G_2 \)?
- How similar is \(G_1 \) to the most similar subgraph of \(G_2 \)?

Isomorphism for Digraphs

\(G_1 \) is isomorphic to \(G_2 \) if there is a 1-1, onto mapping \(h: V_1 \to V_2 \) such that

\[
(v_i,v_j) \in E_1 \iff (h(v_i),h(v_j)) \in E_2
\]

Find an isomorphism \(h: \{1,2,3,4,5\} \to \{a,b,c,d,e\} \).
Check that the condition holds for every edge.

Isomorphism and subgraph isomorphism are defined similarly for undirected graphs.

In this case, when \((v_i,v_j) \in E_1 \), either \((v_i,v_j) \text{ or } (v_j,v_i) \) can be listed in \(E_2 \), since they are equivalent and both mean \((v_i,v_j) \).

Similar Digraphs

Sometimes two graphs are close to isomorphic, but have a few “errors.”

Let \(h(1)=b, h(2)=e, h(3)=c, h(4)=a, h(5) = d \).

\[
\begin{array}{c|c}
(1,2) & (b,e) \\hline
(2,1) & (e,b) \\hline
(3,2) & (c,b) \\hline
(4,5) & (a,d) \\hline
(2,5) & (e,d) \\hline
(3,4) & (c,a)
\end{array}
\]

\((1,2) \in E_1 \), but \((b,e) \notin E_2 \)
\((2,1) \in E_1 \), but \((e,b) \notin E_2 \)
\((3,2) \in E_1 \), but \((c,b) \notin E_2 \)
\((4,5) \in E_1 \), but \((a,d) \notin E_2 \)
\((2,5) \in E_1 \), but \((e,d) \notin E_2 \)
\((3,4) \in E_1 \), but \((c,a) \notin E_2 \)

The mapping \(h \) has 2 errors.

Error of a Mapping

Intuitively, the error of mapping \(h \) tells us
- how many edges of \(G_1 \) have no corresponding edge in \(G_2 \) and
- how many edges of \(G_2 \) have no corresponding edge in \(G_1 \).

Let \(G_1 = (V_1,E_1) \) and \(G_2 = (V_2,E_2) \), and let \(h: V_1 \to V_2 \) be a 1-1, onto mapping.

Forward error

\[
E_F(h) = |\{(v_i,v_j) \in E_1 | (h(v_i),h(v_j)) \notin E_2\}|
\]

Backward error

\[
E_B(h) = |\{(v_i,v_j) \in E_2 | (h(v_i),h(v_j)) \notin E_1\}|
\]

Total error

\[
\text{Error}(h) = E_F(h) + E_B(h)
\]

Relational distance

\[
GD(G_1,G_2) = \min_{h \in H} \text{Error}(h)
\]

for all \(h \in H \), where \(H \) is the set of all 1-1, onto mappings \(h: V_1 \to V_2 \).
Variations of Relational Distance

- normalized relational distance: Divide by the sum of the number of edges in E_1 and those in E_2.
- undirected graphs: Just modify the definitions of EF and EB to accommodate.
- one way mappings: h is 1-1, but need not be onto. Only the forward error EF is used.
- labeled graphs: When nodes and edges can have labels, each node should be mapped to a node with the same label, and each edge should be mapped to an edge with the same label.

Graph Matching Algorithms

- graph isomorphism
- subgraph isomorphism
- relational distance
- attributed relational distance (uses labels)

Subgraph Isomorphism

Given model graph $M = (VM, EM)$

data graph $D = (VD, ED)$

Find 1-1 mapping $h: VM \rightarrow VD$
satisfying $(vi,vj) \in EM \Rightarrow (h(vi),h(vj)) \in ED$

Method: Backtracking Tree Search

![Diagram of tree search for subgraph isomorphism in digraphs]

```
procedure Treesearch(VM, VD, EM, ED, h)
{ v = first(VM);
  for each w ∈ VD
  { h' = h ∪ {(v,w)};
    OK = true;
    for each edge (vi,vj) in EM satisfying that
      either 1. vi = v and vj ∈ domain(h')
            or 2. vj = v and vi ∈ domain(h')
      if ( (h'(vi),h'(vj)) ∉ ED )
        {OK = false; break;};
    if OK
      { VM' = VM – v;
        VD' = VD – w;
        if (isempty(VM')) output(h');
        else Treesearch(VM', VD', EM, ED, h')
      };
  }
}
```

Branch-and-Bound Tree Search

Keep track of the least-error mapping.

![Diagram of branch-and-bound tree search for subgraph isomorphism in digraphs]