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CSE370 Final Exam Solution (11 December 2006)  
  

 
 
Please read through the entire examination first!  This exam was designed to be 
completed in 110 minutes (one hour and 50 minutes) and, hopefully, this estimate will be 
reasonable.   
 
There are 3 problems for a total of 100 points.  The point value of each problem is 
indicated in the table below. Each problem and sub-problem is on a separate sheet of 
paper.  Write your answer neatly in the space provided.  If you need more space (you 
shouldn't), you can write on the back of the sheet where the question is posed, but please 
make sure that you indicate clearly the problem to which the comments apply.  Do NOT 
use any other paper to hand in your answers. If you have difficulty with part of a problem, 
move on to the next one.  They are mostly independent of each other. 

The exam is CLOSED book and CLOSED notes.  Please do not ask or provide anything 
to anyone else in the class during the exam.  Make sure to ask clarification questions 
early so that both you and the others may benefit as much as possible from the answers.  

Good luck and have a great holiday break.  

 
 
 
 

Name: 
 
ID#: 
  

  
Problem Max Score Score

1 25  25
2 50  50
3 25  25

TOTAL 100  100
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1. Combinational Logic (25 points)  

(a – 5 pts) Map the following function on the Karnaugh-map provided below and re-write 
it in canonical sum-of-products form.  Please use minterm notation (e.g., m3) instead of 
the algebraic form (e.g., A’B’CD). 

Z = ((A’ xor B) + C) (CD)’ 

A’B’C’    A’B’D’    ABC’    ABD’    C’D’ 

      m0 + m1 + m2 + m6 + m10 + m12 + m13 + m14  

 

 (b – 5 pts) Re-write the function in minimized sum-of-products form and highlight each 
term that represents an essential prime implicant by underlining it.  Make sure to circle 
each term on the K-map above. 

 

Z =  A’B’C’ + ABC’ + C’D’ 



  3 

(c – 5 pts) Add don’t cares to the K-map you derived in part (a) for the cells covered by 
A’C.  Redraw you new K-map below, circle all prime implicants, and then list the 
essential and non-essential prime implicants for this new function. 

 

 

Essential:  C’D’    A’B’    ABC’ 

 

Non-essential:  ABD’ 
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(d – 10pts) Implement the function of part (c) using an 8:1 multiplexer (provided below) 
and at MOST one inverter.  S2 is the most significant bit of the control signals, S0 is the 
least significant (e.g., S2=1, S1=1, S0=0 selects input #6). 
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2. Finite State Machines (45 points)  

The following Verilog was found among old papers in a dusty drawer of a now defunct 
dot-com company.   Unfortunately, there were no comments in the code. 

 
 
module Mystery (In, Clk, Reset, A, B, Out); 
  input In, Clk, Reset; 
  output A, B, Out; 
 
  reg  [5:0]  state; 
reg  [5:0]  next_state; 
wire [2:0]  count; 

 
  parameter S0   = 6'b000000;  
  parameter S1   = 6'b000001;  
  parameter S2   = 6'b000010;  
  parameter S3a  = 6'b100011;  
  parameter S3b  = 6'b001011;  
  parameter S4aa = 6'b100100;  
  parameter S4ab = 6'b010100;  
  parameter S4bb = 6'b001100;  
 
  always @(posedge Clk) begin 
  if (Reset) begin state = `S0;        end 
  else       begin state = next_state; end 
  end 
 
  always @(In or state) begin 
  case(state) 
    `S0:   next_state = `S1; 
     `S1:   next_state = `S2; 
     `S2:   if (In) next_state = `S3b;  else next_state = `S3a; 
     `S3a:  if (In) next_state = `S4ab; else next_state = `S4aa; 
     `S3b:  if (In) next_state = `S4bb; else next_state = `S4ab; 
     `S4aa: next_state = `S0;    
     `S4ab: next_state = `S0;    
   `S4bb: next_state = `S0;    
      endcase 
  end 
 
  assign count = state[2:0]; 
assign A     = state[5]; 
assign Out   = state[4]; 

  assign B     = state[3]; 

endmodule 
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(a – 10 pts) What type of state machine is this?  Circle: Mealy, Moore, or synchronous-Mealy.  
Derive its state diagram and clearly label all transitions and the values for A, B, and Out in 
each state. Use the template below.  Clearly label all transitions and outputs. 
 
 
 
 

 
 
 

Output = [A, Out, B] 
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(b – 15 pts) Simulate the state machine for the following sample input waveforms.  You 
are provided the values for the input signals, Reset and In.  Fill in the details for the 
signals A, B, and Out.  Also, please indicate the state the FSM is in for each clock cycle 
(i.e., write the symbolic name of the state in each cycle).  Assume that the FSM is 
initially in an unknown state.  Assume that all FFs are positive edge-triggered. 
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(c – 15pts) When we look to see how this state machine was actually implemented, we 
find that there is a 3-bit binary counter in the circuit and 2 individual D flip-flops with 
some very simple logic around them.  We need to figure out if we have an up to date 
description for this module.  The Verilog to describe the actual circuit implementation is 
provided below. 

 

module MysteryImplementation (In, Clk, Reset, A, B, Out); 
  input In, Clk, Reset; 
  output A, B, Out; 
 
  reg  [2:0]  counter; 
reg         A, B; 

 
  always @(posedge Clk) begin 
     if (Reset | counter[2]) counter = 0;  
     else                    counter = counter + 1;  
end 
 

  always @(posedge Clk) begin 
     if (Reset | counter[2]) A = 0;  
     else                    A = A | (counter[1] & ~In); 
end 

 
  always @(posedge Clk) begin 
     if (Reset | counter[2]) B = 0;  
     else                    B = B | (counter[1] & In); 
end 
 
assign Out = A & B; 

endmodule 
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(c – 15 pts continued) Is this an MysteryImplementation a correct implementation of the 
Mystery module?  It turns out it is!  In fact, Mystery and MysteryImplementation 
describe the same state diagram.  What is the correspondence of states between them?  
For each of the states of the Mystery module list the states for the sequential elements of 
the MysteryImplementation module – note that there are 3 state elements in the 
MysteryImplementation: the counter (3 bits), the A FF (1 bit), and the B FF (1 bit).  

Fill in the table below. 

Mystery MysteryImplementation 

state 
[5:0] 

counter 
[2:0] 

A  
 

B  
 

S0   = 6'b000000   000 0 0 

S1   = 6'b000001 001 0 0 

S2   = 6'b000010 010 0 0 

S3a  = 6'b100011 011 1 0 

S3b  = 6'b001011 011 0 1 

S4aa = 6'b100100 100 1 0 

S4ab = 6'b010100 100 1 1 

S4bb = 6'b001100 100 0 1 

 

Since there are 3 separate state machines in MysteryImplementation (the counter with 8 
states and 2 FFs with 2 states each) and the product of the states in each of the three 
would imply there are 32 states in this implementation.  But that would only be true if all 
combinations of states are possible.  That is clearly not the case as the counter goes right 
back to 0 when it reaches 4, so it only reaches 5 of its 8 states.  The FF for A can only 
change to 1 if the counter is at 2 or 3.  Thus, it can only be two different values for the 
counter’s states 3 and 4.  Similarly for B.  However, both A and B can’t change in the 
same cycle as they both rely on In.  In the end, we have 5 states for the counter.  In 
counter states 0, 1, and 2, the A and B FFs will both be 0. In counter state 3, the A and B 
FFs could be 01 or 10.  In counter state 4, the A and B FFs could be 01, 10, or 11.  That 
means we have a total of 3+2+3 states for a total of 8 which is the same as our original 
state diagram. 
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(d – 10 pts) Our next task is to verify that the output of the two machines is the same.  
Note that in MysteryImplementation, the output Out is specified using an assign 
statement.  Describe in words, why this will be asserted in the same way as in the original 
module and why it is still the same type of FSM (Moore, Mealy, or synchronous-Mealy).  

 

Out is still a Moore output, it is only a function of state bits.  It will be true only in those 
states where both and A and B are true.  That is only the case for MysteryImplementation 
in the second to the last row of the table above which is exactly when Out was true as 
part of the state of the Mystery machine.
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3. Basic Computer Organization (25 points)  

You are given the data-path below. Note that there are three registers. Two of these have 
a load control input (A and B), while the other (C) loads a new value on every clock 
cycle. There are two tri-state drivers that connect the outputs of registers A and B to a 
common bus. Finally, there is an ALU that can perform two operations: pass Y, add X 
and Y.  X is always the output of register C, while Y is the value on the bus. 

 

 
 
(a – 5 pts) Show the register-transfer operations needed to implement an instruction that 
swaps the contents of the A and B registers (SWAP A, B). Make sure to clearly indicate 
how many states will be needed to implement the instruction and the value of each 
control signal in each state. Assume the instruction is already in the instruction register so 
there is no need to worry about fetching the instruction or incrementing a program 
counter.  
 
cycle register-transfer 

operations 
AtoBus BtoBus ALU LoadA LoadB 

1 C  A 1 0 Pass 0 0 
2 B  C; C  B 0 1 Pass X 1 
3 A  C 0 0 X 1 0 

  
 

Comment [gb1]: This can be a don’t 
care since we load A on the next  cycle 
and don’t need its current value any 
longer. 

Comment [gb2]: Can’t be don’t cares 
because both could end up being 1 and 
that could be damaging! 
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(b – 5 pts) Show the register-transfer operations needed to implement an instruction that 
doubles the contents of the A register (TWOX A). Make sure to clearly indicate how 
many states will be needed to implement the instruction and the value of each control 
signal in each state. Assume the instruction is already in the instruction register so there is 
no need to worry about fetching the instruction or incrementing a program counter.  
 
cycle register-transfer 

operations 
AtoBus BtoBus ALU LoadA LoadB 

1 C  A 1 0 Pass 0 0 
2 C  C + A 1 0 Add X 0 
3 A  C 0 0 X 1 0 

 

Comment [gb3]: The values in this 
column should not be don’t cares because 
even though we don’t use the value of B 
for this instruction, we shouldn’t change 
it in case it is being used for something 
else. 

Comment [gb4]: This can be a don’t 
care for the same reason as in the 
instruction above. 

Comment [gb5]: Can’t be don’t cares 
because both could end up being 1 and 
that could be damaging! 
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(c – 10 pts) How would you minimally change the architecture above so that you could 
perform the SWAP instruction in two cycles?  You don’t need to be concerned with the 
TWOX instruction for this question.  Alter the data path diagram below. 

 

 

 

 

The data path is modified with a new bus at the output of register C that also be driven 
from A.  On the first cycle we load A into B using this new bus while B is moved to C.  In 
the next cycle the contents of C (originally from B) is moved to A completing the swap. 

cycle register-transfer 
operations 

Ato
Bus 

Bto 
Bus 

ALU Ato 
New
Bus 

Cto 
New
Bus 

Load
A 

Load
B 

1 C  B; B  A; 0 1 Pass 1 0 0 1 
2 A  C; X X X 0 1 1 0 
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(d – 5 pts) How would you minimally change the architecture above so that you could 
perform the TWOX instruction in two cycles?  You don’t need to be concerned with the 
SWAP instruction for this question.  Alter the data path diagram below.   

 

 

 

Using the same data path as part (c), we enable A to the X input of the ALU (through the 
new bus) at the same as we connect A to Y through the original bus.  After the result is 
stored in C, we simply use the next cycle to move it to A. 

cycle register-transfer 
operations 

Ato
Bus 

Bto 
Bus 

ALU Ato 
New
Bus 

Cto 
New
Bus 

Load
A 

Load
B 

1 C  A + A; 1 0 Add 1 0 0 0 
2 A  C; X X X 0 1 1 0 

 

 


