
 1

CSE370 Final Exam Solution (11 December 2006)

Please read through the entire examination first! This exam was designed to be
completed in 110 minutes (one hour and 50 minutes) and, hopefully, this estimate will be
reasonable.

There are 3 problems for a total of 100 points. The point value of each problem is
indicated in the table below. Each problem and sub-problem is on a separate sheet of
paper. Write your answer neatly in the space provided. If you need more space (you
shouldn't), you can write on the back of the sheet where the question is posed, but please
make sure that you indicate clearly the problem to which the comments apply. Do NOT
use any other paper to hand in your answers. If you have difficulty with part of a problem,
move on to the next one. They are mostly independent of each other.

The exam is CLOSED book and CLOSED notes. Please do not ask or provide anything
to anyone else in the class during the exam. Make sure to ask clarification questions
early so that both you and the others may benefit as much as possible from the answers.

Good luck and have a great holiday break.

Name:

ID#:

Problem Max Score Score

1 25 25
2 50 50
3 25 25

TOTAL 100 100

 2

1. Combinational Logic (25 points)

(a – 5 pts) Map the following function on the Karnaugh-map provided below and re-write
it in canonical sum-of-products form. Please use minterm notation (e.g., m3) instead of
the algebraic form (e.g., A’B’CD).

Z = ((A’ xor B) + C) (CD)’

A’B’C’ A’B’D’ ABC’ ABD’ C’D’

 m0 + m1 + m2 + m6 + m10 + m12 + m13 + m14

 (b – 5 pts) Re-write the function in minimized sum-of-products form and highlight each
term that represents an essential prime implicant by underlining it. Make sure to circle
each term on the K-map above.

Z = A’B’C’ + ABC’ + C’D’

 3

(c – 5 pts) Add don’t cares to the K-map you derived in part (a) for the cells covered by
A’C. Redraw you new K-map below, circle all prime implicants, and then list the
essential and non-essential prime implicants for this new function.

Essential: C’D’ A’B’ ABC’

Non-essential: ABD’

 4

(d – 10pts) Implement the function of part (c) using an 8:1 multiplexer (provided below)
and at MOST one inverter. S2 is the most significant bit of the control signals, S0 is the
least significant (e.g., S2=1, S1=1, S0=0 selects input #6).

 5

2. Finite State Machines (45 points)

The following Verilog was found among old papers in a dusty drawer of a now defunct
dot-com company. Unfortunately, there were no comments in the code.

module Mystery (In, Clk, Reset, A, B, Out);
 input In, Clk, Reset;
 output A, B, Out;

 reg [5:0] state;
reg [5:0] next_state;
wire [2:0] count;

 parameter S0 = 6'b000000;
 parameter S1 = 6'b000001;
 parameter S2 = 6'b000010;
 parameter S3a = 6'b100011;
 parameter S3b = 6'b001011;
 parameter S4aa = 6'b100100;
 parameter S4ab = 6'b010100;
 parameter S4bb = 6'b001100;

 always @(posedge Clk) begin
 if (Reset) begin state = `S0; end
 else begin state = next_state; end
 end

 always @(In or state) begin
 case(state)
 `S0: next_state = `S1;
 `S1: next_state = `S2;
 `S2: if (In) next_state = `S3b; else next_state = `S3a;
 `S3a: if (In) next_state = `S4ab; else next_state = `S4aa;
 `S3b: if (In) next_state = `S4bb; else next_state = `S4ab;
 `S4aa: next_state = `S0;
 `S4ab: next_state = `S0;
 `S4bb: next_state = `S0;
 endcase
 end

 assign count = state[2:0];
assign A = state[5];
assign Out = state[4];

 assign B = state[3];

endmodule

 6

(a – 10 pts) What type of state machine is this? Circle: Mealy, Moore, or synchronous-Mealy.
Derive its state diagram and clearly label all transitions and the values for A, B, and Out in
each state. Use the template below. Clearly label all transitions and outputs.

Output = [A, Out, B]

 7

(b – 15 pts) Simulate the state machine for the following sample input waveforms. You
are provided the values for the input signals, Reset and In. Fill in the details for the
signals A, B, and Out. Also, please indicate the state the FSM is in for each clock cycle
(i.e., write the symbolic name of the state in each cycle). Assume that the FSM is
initially in an unknown state. Assume that all FFs are positive edge-triggered.

 8

(c – 15pts) When we look to see how this state machine was actually implemented, we
find that there is a 3-bit binary counter in the circuit and 2 individual D flip-flops with
some very simple logic around them. We need to figure out if we have an up to date
description for this module. The Verilog to describe the actual circuit implementation is
provided below.

module MysteryImplementation (In, Clk, Reset, A, B, Out);
 input In, Clk, Reset;
 output A, B, Out;

 reg [2:0] counter;
reg A, B;

 always @(posedge Clk) begin
 if (Reset | counter[2]) counter = 0;
 else counter = counter + 1;
end

 always @(posedge Clk) begin
 if (Reset | counter[2]) A = 0;
 else A = A | (counter[1] & ~In);
end

 always @(posedge Clk) begin
 if (Reset | counter[2]) B = 0;
 else B = B | (counter[1] & In);
end

assign Out = A & B;

endmodule

 9

(c – 15 pts continued) Is this an MysteryImplementation a correct implementation of the
Mystery module? It turns out it is! In fact, Mystery and MysteryImplementation
describe the same state diagram. What is the correspondence of states between them?
For each of the states of the Mystery module list the states for the sequential elements of
the MysteryImplementation module – note that there are 3 state elements in the
MysteryImplementation: the counter (3 bits), the A FF (1 bit), and the B FF (1 bit).

Fill in the table below.

Mystery MysteryImplementation

state
[5:0]

counter
[2:0]

A

B

S0 = 6'b000000 000 0 0

S1 = 6'b000001 001 0 0

S2 = 6'b000010 010 0 0

S3a = 6'b100011 011 1 0

S3b = 6'b001011 011 0 1

S4aa = 6'b100100 100 1 0

S4ab = 6'b010100 100 1 1

S4bb = 6'b001100 100 0 1

Since there are 3 separate state machines in MysteryImplementation (the counter with 8
states and 2 FFs with 2 states each) and the product of the states in each of the three
would imply there are 32 states in this implementation. But that would only be true if all
combinations of states are possible. That is clearly not the case as the counter goes right
back to 0 when it reaches 4, so it only reaches 5 of its 8 states. The FF for A can only
change to 1 if the counter is at 2 or 3. Thus, it can only be two different values for the
counter’s states 3 and 4. Similarly for B. However, both A and B can’t change in the
same cycle as they both rely on In. In the end, we have 5 states for the counter. In
counter states 0, 1, and 2, the A and B FFs will both be 0. In counter state 3, the A and B
FFs could be 01 or 10. In counter state 4, the A and B FFs could be 01, 10, or 11. That
means we have a total of 3+2+3 states for a total of 8 which is the same as our original
state diagram.

 10

(d – 10 pts) Our next task is to verify that the output of the two machines is the same.
Note that in MysteryImplementation, the output Out is specified using an assign
statement. Describe in words, why this will be asserted in the same way as in the original
module and why it is still the same type of FSM (Moore, Mealy, or synchronous-Mealy).

Out is still a Moore output, it is only a function of state bits. It will be true only in those
states where both and A and B are true. That is only the case for MysteryImplementation
in the second to the last row of the table above which is exactly when Out was true as
part of the state of the Mystery machine.

 11

3. Basic Computer Organization (25 points)

You are given the data-path below. Note that there are three registers. Two of these have
a load control input (A and B), while the other (C) loads a new value on every clock
cycle. There are two tri-state drivers that connect the outputs of registers A and B to a
common bus. Finally, there is an ALU that can perform two operations: pass Y, add X
and Y. X is always the output of register C, while Y is the value on the bus.

(a – 5 pts) Show the register-transfer operations needed to implement an instruction that
swaps the contents of the A and B registers (SWAP A, B). Make sure to clearly indicate
how many states will be needed to implement the instruction and the value of each
control signal in each state. Assume the instruction is already in the instruction register so
there is no need to worry about fetching the instruction or incrementing a program
counter.

cycle register-transfer

operations
AtoBus BtoBus ALU LoadA LoadB

1 C A 1 0 Pass 0 0
2 B C; C B 0 1 Pass X 1
3 A C 0 0 X 1 0

Comment [gb1]: This can be a don’t
care since we load A on the next cycle
and don’t need its current value any
longer.

Comment [gb2]: Can’t be don’t cares
because both could end up being 1 and
that could be damaging!

 12

(b – 5 pts) Show the register-transfer operations needed to implement an instruction that
doubles the contents of the A register (TWOX A). Make sure to clearly indicate how
many states will be needed to implement the instruction and the value of each control
signal in each state. Assume the instruction is already in the instruction register so there is
no need to worry about fetching the instruction or incrementing a program counter.

cycle register-transfer

operations
AtoBus BtoBus ALU LoadA LoadB

1 C A 1 0 Pass 0 0
2 C C + A 1 0 Add X 0
3 A C 0 0 X 1 0

Comment [gb3]: The values in this
column should not be don’t cares because
even though we don’t use the value of B
for this instruction, we shouldn’t change
it in case it is being used for something
else.

Comment [gb4]: This can be a don’t
care for the same reason as in the
instruction above.

Comment [gb5]: Can’t be don’t cares
because both could end up being 1 and
that could be damaging!

 13

(c – 10 pts) How would you minimally change the architecture above so that you could
perform the SWAP instruction in two cycles? You don’t need to be concerned with the
TWOX instruction for this question. Alter the data path diagram below.

The data path is modified with a new bus at the output of register C that also be driven
from A. On the first cycle we load A into B using this new bus while B is moved to C. In
the next cycle the contents of C (originally from B) is moved to A completing the swap.

cycle register-transfer
operations

Ato
Bus

Bto
Bus

ALU Ato
New
Bus

Cto
New
Bus

Load
A

Load
B

1 C B; B A; 0 1 Pass 1 0 0 1
2 A C; X X X 0 1 1 0

 14

(d – 5 pts) How would you minimally change the architecture above so that you could
perform the TWOX instruction in two cycles? You don’t need to be concerned with the
SWAP instruction for this question. Alter the data path diagram below.

Using the same data path as part (c), we enable A to the X input of the ALU (through the
new bus) at the same as we connect A to Y through the original bus. After the result is
stored in C, we simply use the next cycle to move it to A.

cycle register-transfer
operations

Ato
Bus

Bto
Bus

ALU Ato
New
Bus

Cto
New
Bus

Load
A

Load
B

1 C A + A; 1 0 Add 1 0 0 0
2 A C; X X X 0 1 1 0

