Lecture 2: Number Systems

- Logistics
- http://www.cs.washington.edu/370
- HW1 is posted on the web in the calender --- due 1/14 11:30am
- Email list: please sign up on the web.
- Last lecture
 - Class introduction and overview
- Today
 - Binary numbers
 - Base conversion
 - Number systems
 - Twos-complement
 - A/D and D/A conversion

CSE370, Lecture 2

The "WHY" slide

- Binary numbers
 - All computers work with 0's and 1's so it is like learning alphabets before learning English
- Base conversion
 - For convenience, people use other bases (like decimal, hexdecimal) and we need to know how to convert from one to another.
- Number systems
 - There are more than one way to express a number in binary. So 1010 could be 10, -2, -5 or -6 and need to know which one.
- ◆ A/D and D/A conversion
 - Real world signals come in continuous/analog format and it is good to know generally how they become 0's and 1's (and vice versa).

CSE370, Lecture 2

Digital

- Digital = discrete
 - Binary codes (example: BCD)
 - Decimal digits 0-9
- Binary codes
 - Represent symbols using binary digits (bits)
- Digital computers:
 - I/O is digital
 - ASCII, decimal, etc.
 - Internal representation is binary
 - Process information in bits

Decimal	BCD
Symbols	Code
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

CSE370, Lecture 2

The basics: Binary numbers

- · Bases we will use
 - Binary: Base 2
 - Octal: Base 8
 - Decimal: Base 10
 - Hexadecimal: Base 16
- Positional number system
- Addition and subtraction

1011 1011 <u>+ 101</u>0 10101 0101 CSE370, Lecture 2

Binary → hex/decimal/octal conversion

- Conversion from binary to octal/hex
 - Binary: 10011110001
 - Octal: 10 | 011 | 110 | 001=2361₈
 - 100 | 1111 | 0001=4F1₁₆
- Conversion from binary to decimal

CSE370, Lecture 2

Decimal→ binary/octal/hex conversion

	<u>Binary</u>			<u>Octal</u>			<u>tal</u>
	Q	uotient	Remainder		Q	uotient	Remainder
56-	÷2=	28	0	56÷8=	=	7	0
28-	÷2=	14	0	7÷8=		0	7
14-	÷2=	7	0				
7÷	2=	3	1				
3÷:	2=	1	1	$56_{10} =$	111	1000_{2}	
1÷	2=	0	1	5610=	70_{8}		

- Why does this work?

 - N=56₁₀=111000₂
 Q=N/2=56/2=111000/2=11100 remainder 0
- Each successive divide liberates an LSB (least significant bit)

Number systems

- How do we write negative binary numbers?
- Historically: 3 approaches
 - Sign-and-magnitude
 - Ones-complement
 - Twos-complement
- For all 3, the most-significant bit (MSB) is the sign digit
 - 0 = positive
 - 1 ≡ negative
- twos-complement is the important one
 - Simplifies arithmetic
 - Used almost universally

CSE370, Lecture 2

Sign-and-magnitude

- The most-significant bit (MSB) is the sign digit

 - 1 = negative
- The remaining bits are the number's magnitude
- Problem 1: Two representations for zero
 - 0 = 0000 and also -0 = 1000
- Problem 2: Arithmetic is cumbersome

l		Add Subt			act	Co	mpare and	subtract
l	4 + 3	0100 + 0011	4 - 3	0100 + 1011	0100 - 0011	- 4 + 3	1100 + 0011	1100 - 0011
l	= 7	= 0111	= 1	≠ 1111	= 0001	- 1	≠ 1111	= 1001

CSE370, Lecture 2

Ones-complement

- Negative number: Bitwise complement positive number
 - 0111 ≡ 7₁₀
 - $1000 \equiv -7_{10}$
- Solves the arithmetic problem

Add Invert, add, add carry Invert and add 0100 1011 +0011+1100+0011= 01111 0000 1110 add carry:

Remaining problem: Two representations for zero

0 = 0000 and also -0 = 1111

CSE370, Lecture 2

Why ones-complement works

- The ones-complement of an 8-bit positive y is 11111111₂ – y
- ♦ What is 1111111112 ?

 - 1 less than 1 00000000₂ ≡ 2⁸ ≡ 256₁₀ So in ones-complement –y is represented by (2⁸ -1) y
- ◆ Adding representations of x and -y where x, y are positive we get $(2^8 - 1) + x - y$
 - If x < y then x y < 0 there is no carry and get –ve number Just add the representations if no carry
 - If x > y then x y > 0 there is a carry and get +ve number

 ⇒ Need to add 1 and ignore the 2⁸, i.e. "add the carry"
- If x = y then answer should be 0, get 28-1 =11111111₂

CSE370, Lecture 2

Twos-complement

- Negative number: Bitwise complement plus one

 - 0111 ≡ 7₁₀
 1001 ≡ -7₁₀
- Number wheel
- Only one zero!

- ◆ MSB is the sign digit ■ 0 = positive ■ 1 = negative

CSE370, Lecture 2

Twos-complement (con't)

- Complementing a complement → the original number
- Arithmetic is easy
 - Subtraction = negation and addition Easy to implement in hardware

	Add	Invert a	and add	Inver	and add
4 + 3	0100 + 0011	4 - 3	0100 + 1101	- 4 + 3	1100 + 0011
= 7	= 0111	= 1 drop carry	1 0001 = 0001	- 1	1111

Why twos-complement works better

- Recall: The ones-complement of a b-bit positive y is $(2^{b}-1) - y$
- ◆ Adding 1 to get the twos-complement represents -y by 2^b – y
 - So -y and 2^b y are equal mod 2^b (leave the same remainder when divided by 2^b)
 - Ignoring carries is equivalent to doing arithmetic mod 2^b
- ◆ Adding representations of x and -y yields 2^b + x y
- If there is a carry then that means $x \ge y$ and dropping the carry yields x-y
- If there is no carry then x < y and then we can think of it as</p> 2^b – (y-x)

CSE370, Lecture 2

Miscellaneous

- Twos-complement of non-integers
 - 1.6875₁₀ = 01.1011₂ -1.6875₁₀ = 10.0101₂
- Sign extension
 - Write +6 and −6 as twos complement
 - 0110 and 1010
 - Sign extend to 8-bit bytes 00000110 and 11111010
- Can't infer a representation from a number
 - 11001 is 25 (unsigned)
 - 11001 is −9 (sign magnitude)
 - 11001 is -6 (ones complement)
 - 11001 is -7 (twos complement)

CSE370, Lecture 2

Twos-complement overflow

- Answers only correct mod 2^b
 - Summing two positive numbers can give negative result
 - Summing two negative numbers can give a positive result

• Make sure to have enough bits to handle overflow CSE370, Lecture 2

BCD (Binary-Coded Decimal) and Gray codes

Decimal	BCD
Symbols	Code
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Gray
Code
0000
0001
0011
0010
0110
0111
0101
0100
1100
1101

Only one bit changes per step

CSE370, Lecture 2

The physical world is analog

- Digital systems need to
 - Measure analog quantities
 - Speech waveforms, etc
 - Control analog systems Drive motors, etc
- How do we connect the analog and digital domains?
 - Analog-to-digital converter (A/D)
 - Example: CD recording
 - Digital-to-analog converter (D/A)
 - Example: CD playback

CSE370, Lecture 2

Sampling

- Quantization
 - Conversion from analog to discrete values
- Quantizing a signal
 - We sample it

Conversion

- Encoding
 Assigning a digital word to each discrete value
- Encoding a quantized signal

 Encode the samples

 Typically Gray or binary codes

