
Overview

Last lecture
K-Maps

Today
Verilog

Structural constructs
Describing combinational circuits

1CSE370, Lecture 8

Ways of specifying circuits

Schematics
Structural description
Describe circuit as interconnected elementsDescribe circuit as interconnected elements

Build complex circuits using hierarchy
Large circuits are unreadable

HDLs
Hardware description languages

Not programming languages
Parallel languages tailored to digital design

Synthesize code to produce a circuit

2CSE370, Lecture 8

Synthesize code to produce a circuit

Hardware description languages (HDLs)

Abel (~1983)
Developed by Data-I/O
Targeted to PLDs (programmable logic devices)Targeted to PLDs (programmable logic devices)
Limited capabilities (can do state machines)

Verilog (~1985)
Developed by Gateway (now part of Cadence)
Syntax similar to C
Moved to public domain in 1990

VHDL (1987)

3CSE370, Lecture 8

VHDL (~1987)
DoD (Department of Defence) sponsored
Syntax similar to Ada

Verilog versus VHDL

Both “IEEE standard” languages

Most tools support bothMost tools support both

Verilog is “simpler”
Less syntax, fewer constructs

VHDL is more structured
Can be better for large, complex systems
Better modularization

4CSE370, Lecture 8

Simulation and synthesis

Simulation
“Execute” a design to verify correctness

Synthesis
Generate a physical implementation from HDL code

SynthesisHDL
Description

Gate or
Transistor

Description

Ph i l

5CSE370, Lecture 8

Simulation Simulation Physical
Implementation

Functional
Validation

Functional/
Timing

Validation

Real
Chip!

Simulation and synthesis (con’t)

Simulation
Models what a circuit does

Multiply is “*” ignoring implementation optionsMultiply is , ignoring implementation options
Can include static timing
Allows you to test design options

Synthesis
Converts your code to a netlist

Can simulate synthesized design
Tools map your netlist to hardware

6CSE370, Lecture 8

Simulation and synthesis in the CSE curriculum
CSE370: Learn simulation
CSE467: Learn synthesis

Simulation

You provide an environment
Using non-circuit constructs

Active-HDL waveforms, Read files, print
U i V il i l ti dUsing Verilog simulation code

A “test fixture”

Simulation

Note: We will ignore
timing and test benches
until later

7CSE370, Lecture 8

Test Fixture
(Specification)

Circuit Description
(Synthesizeable)

Specifying circuits in Verilog

There are three major styles
Instances ‘n wires
Continuous assignments

E
A

B
g1

g3 X1

AND2

3

OR2

Continuous assignments
“always” blocks

C
g2

Y
2

NOT

3

wire E; wire E; reg E, X, Y;

“Structural” “Behavioral”

8CSE370, Lecture 8

and g1(E,A,B);
not g2(Y,C);
or g3(X,E,Y);

assign E = A & B;
assign Y = ~C;
assign X = E | Y;

always @ (A or B or C)
begin
E = A & B;
Y = ~C;
X = E | Y;

end

Data types

Values on a wire
0, 1, x (unknown or conflict), z (tristate or unconnected)

Vectors
A[3:0] vector of 4 bits: A[3], A[2], A[1], A[0]

Unsigned integer value
Indices must be constants

Concatenating bits/vectors
e.g. sign extend

B[7:0] = {A[3], A[3], A[3], A[3], A[3:0]};

9CSE370, Lecture 8

B[7:0] = {4{A[3]}, A[3:0]};

Style: Use a[7:0] = b[7:0] + c[7:0]
Not a = b + c;

Legal syntax: C = &A[6:7]; // logical and of bits 6 and 7 of A

Data types that do not exist

Structures

PointersPointers

Objects

Recursive types

(Remember, Verilog is not C or Java or Lisp or …!)

10CSE370, Lecture 8

Numbers

Format: <sign><size><base format><number>

14
D i l bDecimal number

–4’b11
4-bit 2’s complement binary of 0011 (is 1101)

12’b0000_0100_0110
12 bit binary number (_ is ignored)

3’h046
3-digit (12-bit) hexadecimal number

11CSE370, Lecture 8

3-digit (12-bit) hexadecimal number

Verilog values are unsigned
C[4:0] = A[3:0] + B[3:0];

if A = 0110 (6) and B = 1010(–6), then C = 10000 (not 00000)
B is zero-padded, not sign-extended

Operators

12CSE370, Lecture 8

Similar to C operators

Two abstraction mechanisms

Modules
More structural
Heavily used in 370 and “real” Verilog codeHeavily used in 370 and real Verilog code

Functions
More behavioral
Used to some extent in “real” Verilog, but not much in 370

13CSE370, Lecture 8

Basic building blocks: Modules

Instanced into a design
Never called

Illegal to nest module defs

E
A

B
g1

g3 X1

AND2

3

OR2

// first simple example
module smpl (X,Y,A,B,C);
input A,B,C;

Illegal to nest module defs.
Modules execute in parallel
Names are case sensitive
// for comments
Name can’t begin with a number
Use wires for connections
and, or, not are keywords

C
g2

Y
2

NOT

3

14CSE370, Lecture 8

output X,Y;
wire E
and g1(E,A,B);
not g2(Y,C);
or g3(X,E,Y);

endmodule

All keywords are lower case
Gate declarations (and, or, etc)

List outputs first
Inputs second

Modules are circuit components

Module has ports
External connections
A,B,C,X,Y in example

E
A

B
g1

g3 X1

AND2

3

OR2

, , , , p
Port types

input
output
inout (tristate)

Use assign statements for
Boolean expressions

and ⇔ &
or ⇔ |

// previous example as a
// Boolean expression
module smpl2 (X,Y,A,B,C);

C
g2

Y
2

NOT

3

15CSE370, Lecture 8

or ⇔ |
not ⇔ ~

module smpl2 (X,Y,A,B,C);
input A,B,C;
output X,Y;
assign X = (A&B)|~C;
assign Y = ~C;

endmodule

module xor_gate (out,a,b);
input a,b;
output out;

Structural Verilog

8 basic gates (keywords):output out;
wire abar, bbar, t1, t2;
not inva (abar,a);
not invb (bbar,b);
and and1 (t1,abar,b);
and and2 (t2,bbar,a);
or or1 (out,t1,t2);

endmodule

8 basic gates (keywords):
and, or, nand, nor
buf, not, xor, xnor

abarNOT AND2

16CSE370, Lecture 8

bbar

t2

t1
abar

b
invb a

and2

a
inva b

and1

or1 out

5

NOT

7

AND2

4
6

8

OR2

A
B

Cin Cout
SumAdder

Behavioral Verilog

Describe circuit behavior
Not implementation

module full_addr (Sum,Cout,A,B,Cin);
input A, B, Cin;
output Sum, Cout;
assign {Cout, Sum} = A + B + Cin;

endmodule

Cin

17CSE370, Lecture 8

{Cout, Sum} is a concatenation

Behavioral 4-bit adder

module add4 (SUM, OVER, A, B);
input [3:0] A;
input [3:0] B;
output [3:0] SUM;
output OVER;
assign {OVER, SUM[3:0]} = A[3:0] + B[3:0];

endmodule

“[3:0] A” is a 4-wire bus labeled “A”
Bit 3 is the MSB
Bit 0 is the LSB

18CSE370, Lecture 8

Can also write “[0:3] A”
Bit 0 is the MSB
Bit 3 is the LSB

Buses are implicitly connected
If you write BUS[3:2], BUS[1:0]
They become part of BUS[3:0]

Continuous assignment

Assignment is continuously evaluated
Corresponds to a logic gate
Assignments execute in parallel

assign A = X | (Y & ~Z);

assign B[3:0] = 4'b01XX;

assign C[15:0] = 4'h00ff;

Boolean operators
(~ for bit-wise negation)

bits can assume four values
(0, 1, X, Z)

variables can be n-bits wide
(MSB:LSB)

Assignments execute in parallel

19CSE370, Lecture 8

assign #3 {Cout, Sum[3:0]} = A[3:0] + B[3:0] + Cin;

arithmetic operator

multiple assignment (concatenation)Gate delay (used by simulator)

module Compare1 (Equal, Alarger, Blarger, A, B);
input A, B;

Example: A comparator

output Equal, Alarger, Blarger;
assign Equal = (A & B) | (~A & ~B);
assign Alarger = (A & ~B);
assign Blarger = (~A & B);

endmodule

Top down design and bottom up design are both okay

20CSE370, Lecture 8

Top-down design and bottom-up design are both okay
⇒ module ordering doesn’t matter
⇒ because modules execute in parallel

// Make a 4-bit comparator from 4 1-bit comparators

module Compare4(Equal, Alarger, Blarger, A4, B4);
i [3 0] 4 4

Comparator example (con’t)

input [3:0] A4, B4;
output Equal, Alarger, Blarger;
wire e0, e1, e2, e3, Al0, Al1, Al2, Al3, B10, Bl1, Bl2, Bl3;

Compare1 cp0(e0, Al0, Bl0, A4[0], B4[0]);
Compare1 cp1(e1, Al1, Bl1, A4[1], B4[1]);
Compare1 cp2(e2, Al2, Bl2, A4[2], B4[2]);
Compare1 cp3(e3, Al3, Bl3, A4[3], B4[3],);

assign Equal = (e0 & e1 & e2 & e3);

21CSE370, Lecture 8

assign Equal = (e0 & e1 & e2 & e3);
assign Alarger = (Al3 | (Al2 & e3) |

(Al1 & e3 & e2) |
(Al0 & e3 & e2 & e1));

assign Blarger = (~Alarger & ~Equal);
endmodule

Sequential assigns don’t make any sense

assign A = X | (Y & ~Z);

assign B = W | A;

assign A = Y & Z;

“Reusing” a variable in
several assign statements
is not allowed

22CSE370, Lecture 8

assign A = X | (Y & ~Z);

assign B = W | A;

assign X = B & Z;

Cyclic dependencies also are bad

A depends on X
which depends on B
which depends on A

Always Blocks

Variables that appear
on the left hand side in
an always block must

reg A, B, C;

always @ (W or X or Y or Z)
begin
A = X | (Y & ~Z);
B = W | A;
A = Y & Z;
if (A & B) b i

Sensitivity list

an always block must
be declared as “reg”s

Statements in an always
block are executed in
sequence

23CSE370, Lecture 8

if (A & B) begin
B = Z;
C = W | Y;

end
end

sequence

All variables must be assigned on
every control path!!!
(otherwise you get the dreaded
“inferred latch”)

module and gate (out, in1, in2);

Functions

Use functions for complex combinational logic

module and_gate (out, in1, in2);
input in1, in2;
output out;

assign out = myfunction(in1, in2);

function myfunction;
input in1, in2;
begin

24CSE370, Lecture 8

myfunction = in1 & in2;
end

endfunction

endmodule

Benefit:
Functions force a result
⇒ Compiler will fail if function

does not generate a result

Sequential Verilog-- Blocking and non-blocking
assignments

Blocking assignments (Q = A)
Variable is assigned immediately

New value is used by subsequent statements

Non-blocking assignments (Q <= A)
Variable is assigned after all scheduled statements are executed

Value to be assigned is computed but saved for later
Usual use: Register assignment

Registers simultaneously take new values after the clock edge

Example: Swap

25CSE370, Lecture 8

always @(posedge CLK)
begin

temp = B;
B = A;
A = temp;

end

always @(posedge CLK)
begin

A <= B;
B <= A;

end

Sequential Verilog-- Assignments- watch out!

Blocking versus Non-blocking

reg B, C, D;

always @(posedge clk)
begin

B <= A;
C <= B;
D <= C;

end

reg B, C, D;

always @(posedge clk)
begin

B = A;
C = B;
D = C;

end

26CSE370, Lecture 8

Verilog tips

Do not write C-code
Think hardware, not algorithms

Verilog is inherently parallelVerilog is inherently parallel
Compilers don’t map algorithms to circuits well

Do describe hardware circuits
First draw a dataflow diagram
Then start coding

References
Tutorial and reference manual are found in ActiveHDL help

27CSE370, Lecture 8

Tutorial and reference manual are found in ActiveHDL help
http://www.cs.washington.edu/education/courses/cse370/08au/Tutorials/Tutorial_3.htm

“Starter’s Guide to Verilog 2001” by Michael Ciletti
copies for borrowing in hardware lab

Summary of two-level combinational-logic

Logic functions and truth tables
AND, OR, Buf, NOT, NAND, NOR, XOR, XNOR
Minimal set

Axioms and theorems of Boolean algebra
Proofs by re-writing
Proofs by perfect induction (fill in truth table)

Gate logic
Networks of Boolean functions
NAND/NOR conversion and de Morgan’s theorem

f

28CSE370, Lecture 8

Canonical forms
Two-level forms
Incompletely specified functions (don’t cares)

Simplification
Two-level simplification (K-maps)

Solving combinational design problems

Step 1: Understand the problem
Identify the inputs and outputs
Draw a truth tableDraw a truth table

Step 2: Simplify the logic
Draw a K-map
Write a simplified Boolean expression

SOP or POS
Use don’t cares

Step 3: Implement the design

29CSE370, Lecture 8

Step 3: Implement the design
Logic gates and/or Verilog

