Overview

& Last lecture
= K-Maps

& Today
= Verilog
& Structural constructs
¥ Describing combinational circuits

CSE370, Lecture 8

Ways of specifying circuits

& Schematics
= Structural description
= Describe circuit as interconnected elements
¥ Build complex circuits using hierarchy
¥ Large circuits are unreadable

& HDLs
= Hardware description languages
¥ Not programming languages
« Parallel languages tailored to digital design
= Synthesize code to produce a circuit

CSE370, Lecture 8

Hardware description languages (HDLS)

& Abel (~1983)
= Developed by Data-1/0
= Targeted to PLDs (programmable logic devices)
= Limited capabilities (can do state machines)

& Verilog (—~1985)
= Developed by Gateway (now part of Cadence)
= Syntax similar to C
= Moved to public domain in 1990

& VHDL (~1987)
= DoD (Department of Defence) sponsored
= Syntax similar to Ada

CSE370, Lecture 8

Verilog versus VHDL

& Both “IEEE standard” languages
4 Most tools support both

& Verilog is “simpler”
= Less syntax, fewer constructs

4 VHDL is more structured
= Can be better for large, complex systems
= Better modularization

CSE370, Lecture 8

Simulation and synthesis

4 Simulation
= “Execute” a design to verify correctness

& Synthesis
= Generate a physical implementation from HDL code

Gate or
Des':? LtiOn > Transistor
. Description

!

Simulation and synthesis (con’t)

l ‘ - ~
Simulation Simulation Physical

Implementation

] !

AN J
Functional Fu_T_licntjli?qr;aI/ Real
Validation validation Chip!

(1)

CSE370, Lecture 8

& Simulation
= Models what a circuit does
¥ Multiply is “*”, ignoring implementation options
= Can include static timing
= Allows you to test design options

& Synthesis
= Converts your code to a netlist
¥ Can simulate synthesized design
= Tools map your netlist to hardware

& Simulation and synthesis in the CSE curriculum
s CSE370: Learn simulation
m CSE467: Learn synthesis

CSE370, Lecture 8

Simulation

4 You provide an environment
= Using non-circuit constructs
& Active-HDL waveforms, Read files, print
= Using Verilog simulation code
¥ A “test fixture”
Note: We will ignore

timing and test benches

until later
Simulation
Test Fixture Circuit Description
(Specification) (Synthesizeable)
CSE370, Lecture 8 7

Specifying circuits in Verilog

& There are three major styles a

= Instances ‘n wires
= Continuous assignments
= “always” blocks

B

c Y
2.9
“Structural” “Behavioral”
wire E; wire E; reg E, X, VY;
and g1(E,A,B); assign E = A & B; always @ (A or B or C)
not g2(Y,C); assign Y = ~C; begin
or g3(X,E,Y); assign X = E | Y; E=A & B;
Y = ~C;
X=E|] Y;
end

CSE370, Lecture 8

Data types

& Values on a wire
= 0, 1, x (unknown or conflict), z (tristate or unconnected)

& Vectors
= A[3:0] vector of 4 bits: A[3], A[2], A[1], A[O]
¥ Unsigned integer value
¥ Indices must be constants

= Concatenating bits/vectors
¥ e.g. sign extend
€B[7:0] = {A[3], A[3], A[3], A[3], A[3:0]};
€B[7:0] = {4{A[31}, A[3:0]};
m Style: Use a[7:0] = b[7:0] + c[7:0]
Not a=b+c;
m Legal syntax: C = &A[6:7]; // logical and of bits 6 and 7 of A

CSE370, Lecture 8 9

Data types that do not exist

& Structures
¢ Pointers
& Objects

& Recursive types

& (Remember, Verilog is not C or Java or Lisp or ...

CSE370, Lecture 8

)

10

Numbers

& Format: <sign><size><base format><number>

¢ 14
= Decimal number

& —-4'bll
= 4-bit 2's complement binary of 0011 (is 1101)

¢ 12'b0000_0100_0110
= 12 bit binary number (_ is ignored)

¢ 3'h046
= 3-digit (12-bit) hexadecimal number

& Verilog values are unsigned
= C[4:0] = A[3:0] + B[3:0];
¥ if A= 0110 (6) and B = 1010(-6), then C = 10000 (170t 00000)
¥ B is zero-padded, not sign-extended

CSE370, Lecture 8 11

Operators

> greater than Relational
>= greater than or equal fo Relational
< less than Relational
<= less than or equal to Relational
- logical equality Equality
1= logical inequality Equality
=== case equality Equality
== case inequality Equality
& bit-wise AND Bit-wise

n bit-wise XOR Bit-wise
A~or~A | bit-wise XNOR Bit-wise

| bit-wise OR Bit-wise
&& logical AND Logical

1 logical OR Logical

2 conditional Conditional

Verilog .

Operator Name Functional Group |
0 bit-select or part-select
O parenthesis
! logical negation Logical
- negation Bit-wise
& reduction AND Reduction
| reduction OR Reduction
~& reduction NAND Reduction
-1 reduction NOR Reduction
n reduction XOR Reduction
~AorA~ reduction XNOR Reduction
¥ unary (sign) plus Arithmetic
- unary (sign) minus Arithmetic
{} [«
wn replication Replication
. multiply Arithmetic
/ divide Arithmetic
% modulus Arithmetic
+ binary plus Arithmetic
- binary minus Arithmetic
<< shift left Shift
>> shift right Shift

CSE370, Lecture 8

Similar to C operators

12

Two abstraction mechanisms

& Modules
= More structural
= Heavily used in 370 and “real” Verilog code

& Functions
= More behavioral
= Used to some extent in “real” Verilog, but not much in 370

CSE370, Lecture 8

13

Basic building blocks: Modules

= Instanced into a design
¥ Never called
= lllegal to nest module defs.
= Modules execute in parallel
= Names are case sensitive
= // for comments
= Name can't begin with a number
= Use wires for connections
= and, or, not are keywords
= All keywords are lower case
= Gate declarations (and, or, etc)
¥ List outputs first
¥ Inputs second

CSE370, Lecture 8

1

5 b
>0
2.02 .

o x

Y

// first simple example
module smpl (X,Y,A,B,C);

input A,B,C;

output X,Y;

wire E

and g1(E,A,B);

not g2(Y,C);

or 9g3(X,E,Y);
endmodule

14

Modules are circuit components

= Module has ports
¥ External connections
¥ AB,C,X,Y in example
= Port types
¥ input
¥ output
¥ inout (tristate)
= Use assign statements for
Boolean expressions
Kand &
Kor < |
¥not < ~

CSE370, Lecture 8

// previous example as a

// Boolean expression

module smpl2 (X,Y,A,B,C);
input A,B,C;

output X,Y;

assign X = (A&B)|~C;

assign Y = ~C;
endmodule

15

Structural Verilog

module xor_gate (out,a,b);

input a,b;

output out;

wire abar, bbar, tl, t2;

not inva (abar,a);

not invb (bbar,b);

and andl (tl,abar,b);

and and2 (t2,bbar,a);

or orl (out,tl,t2);
endmodule

8 basic gates (keywords):

and, or, nand, nor
buf, not, xor, xnor

N AND2
l> o abar
’ D)

4
inva b

and

CSE370, Lecture 8

AND2

and.

16

Behavioral Verilog

Describe circuit behavior A—s
= Not implementation B —

Cin—

Adder

—— Sum
— Cout

module full_addr (Sum,Cout,A,B,Cin);
input A, B, Cin;
output Sum, Cout;
assign {Cout, Sum} = A + B + Cin;
endmodule

{Cout, Sum} is a concatenation

CSE370, Lecture 8

17

Behavioral 4-bit adder

module add4 (SUM, OVER, A, B);

input [3:0] A;

input [3:0] B;

output [3:0] SUM;

output OVER;

assign {OVER, SUM[3:01} = A[3:0] + B[3:0]:
endmodule

“[3:0] A" is a 4-wire bus labeled “A”
Bit 3 is the MSB
Bit O is the LSB

Can also write “[0:3] A”
Bit O is the MSB
Bit 3 is the LSB

Buses are implicitly connected
If you write BUS[3:2], BUS[1:0]
They become part of BUS[3:0]

CSE370, Lecture 8 18

Continuous assignment

& Assignment is continuously evaluated
= Corresponds to a logic gate
= Assignments execute in parallel
Boolean operators

/ (~ for bit-wise negation)
A=X] (Y& -~2);

bits can assume four values

assign
assign B[3:0] = 4"bo1xx; «— (0.1,% 2)
variables can be n-bits wide

assign C[15:0] = 4"h0Off; «~— (MSB:LSB)
assign #3 {Cout, Sum[3:0]} = A[3:0] + B[3:0] + Cin;
arithmetic operator

Gate delay (used by simulator) multiple assignment (concatenation)

CSE370, Lecture 8 19

Example: A comparator

module Comparel (Equal, Alarger, Blarger, A, B);
input A, B;
output Equal, Alarger, Blarger;
assign Equal = (A & B) | (<A & ~B);
assign Alarger = (A & ~B);
assign Blarger = (A & B);
endmodule

Top-down design and bottom-up design are both okay
= module ordering doesn’t matter
= because modules execute in parallel

CSE370, Lecture 8

20

Comparator example (con’t)

// Make a 4-bit comparator from 4 1-bit comparators

module Compare4(Equal, Alarger, Blarger, A4, B4);
input [3:0] A4, B4;
output Equal, Alarger, Blarger;
wire e0, el, e2, e3, AlO, All, Al2, Al3, B10, BI1, BI2, BI3;

Comparel cp0(e0, AlO, BIO, A4[0], B4[0]);
Comparel cpl(el, All, BI1l, A4[1], B4[1]);
Comparel cp2(e2, Al2, BI2, A4[2], B4[2]);
Comparel cp3(e3, Al3, BI3, A4[3], B4[31,):

assign Equal = (e0 & el & e2 & e3);
assign Alarger = (AI3 | (AlI2 & e3) |
(Al1l & e3 & e2) |
(AIO & e3 & e2 & el));
assign Blarger = (~Alarger & ~Equal);
endmodule

CSE370, Lecture 8 21

Sequential assigns don't make any sense

assign A = X | (Y & ~2);
= — . “Reusing” a variable in
assign B = W | A; several %ssign statements
is not allowed

assign A =Y & Z;
assign A = X | (Y & ~2); Cyclic dependencies also are bad
assign B = W | A; A depends on X

I which depends on B
assign X = B & Z; which depends on A

CSE370, Lecture 8 22

Always Blocks

Variables that appear
on the left hand side in

an always block must
/ be declared as “reg”s
reg A, B, C;

Sensitivity list
always @ (W or X or Y or Z)/

begin

A=X1] (¢ & ~2);
B=WIA; Statements in an always
A=Y & Z; block are executed in
if (A & B) begin sequence

B = Z;

C=W1]Yy;
end

All variables must be assigned on
end every control path!!!

(otherwise you get the dreaded
“inferred latch”)

CSE370, Lecture 8 23

Functions

& Use functions for complex combinational logic
module and_gate (out, inl, in2);

input inl, in2;

output out;

assign out = myfunction(inl, in2);

function myfunction;
input inl, in2;

begin
myfunction = inl & in2;
end _ Benefit:
endfunction S
Functions force a result
endmodule = Compiler will fail if function
does not generate a result
CSE370, Lecture 8 24

Sequential Verilog-- Blocking and non-blocking
assignments

& Blocking assignments (Q = A)
= Variable is assigned immediately
 New value is used by subsequent statements

4 Non-blocking assignments (Q <= A)
= Variable is assigned after all scheduled statements are executed
¥ Value to be assigned is computed but saved for later
= Usual use: Register assignment
¥ Registers simultaneously take new values after the clock edge

& Example: Swap

always @(posedge CLK) always @(posedge CLK)
begin begin
temp = B; A <= B;
B = A; B <= A;
A = temp; end
end

CSE370, Lecture 8 25

Sequential Verilog-- Assignments- watch out!

& Blocking versus Non-blocking
reg B, C, D; reg B, C, D;
always @(posedge clk) always @(posedge clk)
begin begin
B = A; B <= A;
C = B; C <= B;
D =2¢C; D <= C;
end end

CSE370, Lecture 8 26

Verilog tips

4 Do not write C-code
= Think hardware, not algorithms
¥ Verilog is inherently parallel
¥ Compilers don't map algorithms to circuits well

@ Do describe hardware circuits
= First draw a dataflow diagram
= Then start coding

& References
= Tutorial and reference manual are found in ActiveHDL help
= http://www.cs.washington.edu/education/courses/cse370/08au/Tutorials/Tutorial_3.htm
= “Starter’s Guide to Verilog 2001” by Michael Ciletti
copies for borrowing in hardware lab

CSE370, Lecture 8 27

Summary of two-level combinational-logic

& Logic functions and truth tables
= AND, OR, Buf, NOT, NAND, NOR, XOR, XNOR
= Minimal set

& Axioms and theorems of Boolean algebra
= Proofs by re-writing
= Proofs by perfect induction (fill in truth table)

& Gate logic
= Networks of Boolean functions
= NAND/NOR conversion and de Morgan's theorem

4 Canonical forms
= Two-level forms
= Incompletely specified functions (don't cares)

& Simplification
= Two-level simplification (K-maps)

CSE370, Lecture 8 28

Solving combinational design problems

& Step 1: Understand the problem
= ldentify the inputs and outputs
= Draw a truth table

& Step 2: Simplify the logic
= Draw a K-map
= Write a simplified Boolean expression
¥ SOP or POS
¥ Use don't cares

& Step 3: Implement the design
= Logic gates and/or Verilog

CSE370, Lecture 8

29

