
1CSE370, Lecture 26

Lecture 26

◆ Logistics
■ Ant extra credit problem due today

■ Extra lab check-off times
� Monday 12:30-4:20

� Tuesday 12:00-2:00

■ All labs must be done by Tuesday 2:00pm

■ Review session Monday 4:30 pm here

■ Final Exam Wednesday 2:30 pm here

◆ Today
■ Computer Organization Overview

� Where some of the things we’ve learned fit in

■ Review

■ Evaluation: leave last 10-15 min for this

2CSE370, Lecture 26

central processing
unit (CPU)

instruction unit
– instruction fetch and
interpretation FSM

execution unit
– functional units
and registers

address

read/write

data

Processor Memory
System

Structure of a computer

◆ Block diagram view

control signals

data conditions

Data PathControl

3CSE370, Lecture 26

LD asserted during a lo-to-hi clock
transition loads new data into FFs

OE asserted causes FF state to be
connected to output pins; otherwise they
are left unconnected (high impedance)

OE

Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

LD

D7
D6
D5
D4
D3
D2
D1
D0 CLK

Registers

◆ Selectively loaded – EN or LD input

◆ Output enable – OE input

◆ Multiple registers – group 4 or 8 in parallel

4CSE370, Lecture 26

Instruction sequencing

◆ Example – an instruction to add the contents of two registers (Rx
and Ry) and place result in a third register (Rz)

◆ Step 1: get the ADD instruction from memory into an instruction
register (IR)

◆ Step 2: decode instruction
■ instruction in IR has the code of an ADD instruction

■ register indices used to generate output enables for registers Rx and

Ry

■ register index used to generate load signal for register Rz

◆ Step 3: execute instruction
■ enable Rx and Ry output and direct to ALU

■ setup ALU to perform ADD operation

■ direct result to Rz so that it can be loaded into register

5CSE370, Lecture 26

Instruction types

◆ Data manipulation
■ add, subtract

■ increment, decrement

■ multiply

■ shift, rotate

■ immediate operands

◆ Data staging
■ load/store data to/from memory

■ register-to-register move

◆ Control
■ conditional/unconditional branches in program flow

■ subroutine call and return

6CSE370, Lecture 26

Elements of the control unit (aka instruction
unit)

◆ Standard FSM elements
■ state register

■ next-state logic

■ output logic (datapath/control signalling)

■ Moore or synchronous Mealy machine to avoid loops unbroken by FF

◆ Plus additional "control" registers
■ instruction register (IR)

■ program counter (PC)

◆ Inputs/outputs
■ outputs control elements of data path

■ inputs from data path used to alter flow of program (test if zero)

7CSE370, Lecture 26

Reset

Initialize
Machine

Register-
to-Register

Branch
Not Taken

Branch
Taken

Instruction execution

◆ Control state diagram (for each diagram)
■ reset

■ fetch instruction

■ decode

■ execute

◆ Instructions partitioned into three classes
■ branch

■ load/store

■ register-to-register

◆ Different sequence through
diagram for each
instruction type

Init

Fetch
Instr.

Execute
Instr.

Load/
StoreBranch

Incr.
PC

8CSE370, Lecture 26

Cin

Ain
Bin

Sum

Cout

FA

HA
Ain

Bin

Sum

Cin

Cout
HA

Data path (hierarchy)

◆ Arithmetic circuits constructed in hierarchical and iterative fashion
■ each bit in datapath is functionally identical

■ 4-bit, 8-bit, 16-bit, 32-bit , 64-bit datapaths

9CSE370, Lecture 26

16 16

A B

S ZN

Operation

16

Data path (ALU)

◆ ALU block diagram
■ input: data and operation to perform

■ output: result of operation and status information

10CSE370, Lecture 26

16

Z

N

OP

16

ACREG

16

16

Data path (ALU + registers)

◆ Accumulator
■ special register
■ one of the inputs to ALU
■ output of ALU stored back in accumulator

◆ One-address instructions
■ operation and address of one operand
■ other operand and destination

is accumulator register
■ AC ← AC op Mem[addr]
■ "single address instructions”

(AC implicit operand)

◆ Multiple registers
■ part of instruction used

to choose register operands

11CSE370, Lecture 26

2 bits wide1 bit wide

Data path (bit-slice)

◆ Bit-slice concept – iterate to build n-bit wide datapaths

CO CIALU

AC

R0

from
memory

rs

rt

rd

CO ALU

AC

R0

from
memory

rs

rt

rd

CIALU

AC

R0

from
memory

rs

rt

rd

12CSE370, Lecture 26

Instruction path

◆ Program counter
■ keeps track of program execution

■ address of next instruction to read from memory

■ may have auto-increment feature or use ALU

◆ Instruction register
■ current instruction

■ includes ALU operation and address of operand

■ also holds target of jump instruction

■ immediate operands

◆ Relationship to data path
■ PC may be incremented through ALU

■ contents of IR may also be required as input to ALU

13CSE370, Lecture 26

Data path (memory interface)

◆ Memory
■ separate data and instruction memory (Harvard architecture)

� two address busses, two data busses
■ single combined memory (Princeton architecture)

� single address bus, single data bus

◆ Separate memory
■ ALU output goes to data memory input
■ register input from data memory output
■ data memory address from instruction register
■ instruction register from instruction memory output
■ instruction memory address from program counter

◆ Single memory
■ address from PC or IR
■ memory output to instruction and data registers
■ memory input from ALU output

14CSE370, Lecture 26

16

Z

N

OP

8

ACREG

16

16
load
path

store
path

Data Memory
(16-bit words)

16

OP

16

PCIR

16

16

data

addr

rd wr

MARControl
FSM

Block diagram of processor

◆ Register transfer view of Princeton architecture
■ which register outputs are connected to which register inputs

■ arrows represent data-flow, other are control signals from control FSM

■ MAR may be a simple multiplexer rather than separate register

■ MBR is split in two (REG and IR)

■ load control for each register

15CSE370, Lecture 26

Control
FSM

16 16

Z

N

OP

16

ACREG

16
load
path

store
path

Data Memory
(16-bit words)

16 16

OP

16

PCIR

16

data

addr

rd wr

Inst Memory
(8-bit words)

data

addr

Block diagram of processor

◆ Register transfer view of Harvard architecture
■ which register outputs are connected to which register inputs

■ arrows represent data-flow, other are control signals from control FSM

■ two MARs (PC and IR)

■ two MBRs (REG and IR)

■ load control for each register

16CSE370, Lecture 26

“Why” take CSE 370

◆ Required (okay, but let’s talk about why it is required and will be
useful for your future)

◆ Most basic building blocks of computer science (0’s and 1’s)

◆ It is important to understand how they are used as baseline for
more complex operations (adding, storing, other logic like
if/while)

◆ It is good to understand what can be implemented in hardware,
and why it is sometimes good to implement certain things in
hardware instead of software

◆ Understand how some of the technology you interact with on
daily basis (memory stick, vending machine, etc) at the hardware
logic level.

◆ Knowledge gained in this course is used directly in
industry/research

17CSE370, Lecture 26

What you should know

◆ Combinational logic basics
■ Binary/hex/decimal numbers

■ Ones and twos complement arithmetic

■ Truth tables

■ Boolean algebra

■ Basic logic gates

■ Schematic diagrams

■ Timing diagrams

■ de Morgan's theorem

■ AND/OR to NAND/NOR logic conversion

■ K-maps (up to 4 variables), logic minimization, don't cares

■ SOP, POS

■ Minterm and maxterm expansions (canonical, minimized)

I like Pink and Blue but not Yellow…

18CSE370, Lecture 26

◆ Combinational logic applications
■ Combinational design

� Input/output encoding

� Truth table

� K-map

� Boolean equation

� Schematics

■ Multiplexers/demultiplexers

■ PLAs/PALs

■ ROMs

■ Adders

4529
+ 34532

????

What you should know

19CSE370, Lecture 26

◆ Sequential logic building blocks
■ Latches (R-S and D)

■ Flip-flops (D and T)

■ Latch and flip-flop timing (setup/hold time, prop delay)

■ Timing diagrams

■ Asynchronous inputs and metastability

■ Registers

Remember that
the last number was 1

What you should know

20CSE370, Lecture 26

What you should know

◆ Counters
■ Timing diagrams

■ Shift registers

■ Ring counters

■ State diagrams and state-transition tables

■ Counter design procedure
1. Draw a state diagram

2. Draw a state-transition table

3. Encode the next-state functions

4. Implement the design

■ Self-starting counters

1, 2, 3, 4, …

21CSE370, Lecture 26

◆ Finite state machines
■ Timing diagrams (synchronous FSMs)

■ Moore versus Mealy versus synchronized/registered Mealy

■ FSM design procedure
1. State diagram

2. state-transition table

3. State minimization

4. State encoding

5. Next-state logic minimization

6. Implement the design

■ State minimization

■ One-hot / output-oriented encoding

■ State partitioning

■ FSM design guidelines
� Separate datapath and control

What you should know (Final exam focus is
here though exam is cumulative)

Food!

start

The last coin was 5cents and
already had 10cents deposited

so let’s pop out a coffee

22CSE370, Lecture 26

◆ Finite state machines and Verilog
■ Understanding simple Verilog

■ Expressing Moore and Mealy machines in sequential Verilog

■ Understanding Verilog descriptions of finite state machines

expressed in standard stylized formats

◆ Other
■ Pipelining and Retiming

What you should know (Final exam focus is
here though exam is cumulative)

23CSE370, Lecture 26

Final exam logistics

◆ 2:30 – 4:20 (1 hour and 45 minutes long)

◆ Materials: cumulative but more focus on later material
HW7, HW8.

◆ Closed book/notes, no calculator

◆ Scratch papers provided

◆ Just have your pencil/pen and eraser

◆ Raise hand for questions (don’t walk to get help)

24CSE370, Lecture 26

Thank you

Thank you for making teaching this course fun

I hope you enjoyed the course

Send me an email or drop in for questions about CSE, etc.

Good luck on your final exams!

