
1CSE370, Lecture 24

Lecture 24

◆ Logistics
■ HW7 back today
■ Midterm2 back today (Average 80/100)

� Solution on-line this PM

■ HW8 due Wednesday
■ Ant extra credit due Friday
■ Final exam, Wednesday March 18, 2:30-4:20 pm here

� Review session Monday, March 16, 4:30 pm, Place EEB 037

◆ Last lecture
■ State encoding

� One-hot encoding
� Output encoding

■ State partitioning

◆ Today
■ Encoding & Partitioning examples

2CSE370, Lecture 24

State-encoding strategies

◆ No guarantee of optimality
■ An intractable problem

◆ Most common strategies
■ Binary (sequential) – number states as in the state table

■ Random – computer tries random encodings

■ Heuristic – rules of thumb that seem to work well
� e.g. Gray-code – try to give adjacent states (states with an arc

between them) codes that differ in only one bit position

■ One-hot – use as many state bits as there are states

■ Output – use outputs to help encode states

■ Hybrid – mix of a few different ones (e.g. One-hot +

heuristic)

3CSE370, Lecture 24

One-hot encoding

◆ One-hot: Encode n states using n flip-flops
■ Assign a single “1” for each state

� Example: 0001, 0010, 0100, 1000

■ Propagate a single “1” from one flip-flop to the next
� All other flip-flop outputs are “0”

◆ The inverse: One-cold encoding
■ Assign a single “0” for each state

� Example: 1110, 1101, 1011, 0111

■ Propagate a single “0” from one flip-flop to the next
� All other flip-flop outputs are “1”

◆ “almost one-hot” encoding (modified one-hot encoding)
■ Use no-hot (000…0) for the initial (reset state)

■ Assumes you never revisit the reset state till reset again.

4CSE370, Lecture 24

Another Encoding Example:
Digital combination lock

◆ An output-encoded FSM
■ Punch in 3 values in sequence and the door opens

■ If there is an error the lock must be reset

■ After the door opens the lock must be reset

■ Inputs: sequence of number values, reset

■ Outputs: door open/close

resetvalue

open/closed

new

clock

5CSE370, Lecture 24

Separate data path and control

◆ Design datapath first
■ After the state diagram

■ Before the state encoding

◆ Control has 2 outputs
■ Mux control to datapath

■ Lock open/closed

reset

open/closed

newC1 C2 C3

comparatorvalue
equal

multiplexer

controller

mux
control

clock
4

4 4 4

4

6CSE370, Lecture 24

Draw the state diagram

closed

closed
mux=C1

start
equal
& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S0 S1 S2 S3

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

7CSE370, Lecture 24

C1 C2 C3

comparator equal

multiplexer

mux
control

4

4 4 4

4
value

C1i C2i C3i

mux
control

valuei

equal

Design the datapath

◆ Choose simple control
■ 3-wire mux for datapath

� Control is 001, 010, 100

■ Open/closed bit for lock state
� Control is 0/1

8CSE370, Lecture 24

Output encode the FSM

◆ FSM outputs
■ Mux control is 100, 010, 001

■ Lock control is 0/1

◆ State are: S0, S1, S2, S3, or ERR
■ Can use 3, 4, or 5 bits to encode

■ Have 4 outputs, so choose 4 bits
� Encode mux control and lock control in state bits

� Lock control is first bit, mux control is last 3 bits

S0 = 0001 (lock closed, mux first code)

S1 = 0010 (lock closed, mux second code)

S2 = 0100 (lock closed, mux third code)

S3 = 1000 (lock open)

ERR = 0000 (error, lock closed)

9CSE370, Lecture 24

FSM has 4 state bits and 2 inputs...

◆ Output encoded!
■ Outputs and state bits are the same

◆ How do we minimize the logic?
■ FSM has 4 state bits and 2 inputs (equal, new)

■ 6-variable K-map for all five states?
� Way too complicated

◆ Notice the state assignment is close to one-hot
■ ERR state (0000) is only deviation

■ Is there a clever design we can use?

10CSE370, Lecture 24

Encode 4 state bits

closed

closed
mux=C1

start
equal
& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S0 S1 S2 S3

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

S0
+ = S0N’

S1
+ = S0EN + S1N’

S2
+ = S1EN + S2N’

S3
+ = S2EN + S3

A clever way for ERR is to use both

Preset/Clear in existing flipflops.

Preset0 = start

Preset1,2,3 = 0

Reset0 = start’(E’N + (Q0+Q1+Q2+Q3)’)

Reset1,2,3 = start + (E’N + (Q0+Q1+Q2+Q3)’)

Not equal & new

Already in ERR

11CSE370, Lecture 24

D0 = Q0N’

D1 = Q0EN + Q1N’

D2 = Q1EN + Q2N’

D3 = Q2EN + Q3

Preset0 = start

Preset1,2,3 = 0

Reset0 = start’(E’N + (Q0+Q1+Q2+Q3)’)

Reset1,2,3 = start + (E’N + (Q0+Q1+Q2+Q3)’)

S0

S2

S1

S3

S0

S0
E

N

S1
N’

S1
E
N

S2
N’

S2
E
N

S0
S1
S2
S3

12CSE370, Lecture 24

C1

C2

C5•S2

S6

S4

S5SB

C1•S1

C3•S2+
C4•S3

(C1•S1+
C3•S2+
C4•S3+
C5•S2)’

C4

S1

S3

S2 SA

C2•S6

C3+C5

(C2•S6)’

State Partitioning

◆ Add idles states to handoff control between machines

C1

C2

C3

C4 C5

S1

S3

S2

S6

S4

S5

13CSE370, Lecture 24

highway

farm road

car sensors

Example: Traffic light controller

◆ Highway/farm road intersection

14CSE370, Lecture 24

Example: traffic light controller

◆ A busy highway is intersected by a little used farm road

◆ Detectors C sense the presence of cars waiting on the
farm road

■ with no car on farm road, lights remain Green in highway

direction

■ if vehicle on farm road, highway lights go from Green to Yellow to
Red, allowing the farm road lights to become Green

■ these stay Green only as long as a farm road car is detected but
never longer than a set interval

■ when these are met, farm lights transition from Green to Yellow
to Red, allowing highway to return to Green

■ even if farm road vehicles are waiting, highway gets at least a set
interval as Green

15CSE370, Lecture 24

Example: traffic light controller

◆ Assume you have an interval timer that in response to a
set (ST) signal generates both:

■ a short time pulse (TS) and
■ a long time pulse (TL)

◆ TS is to be used for timing yellow lights and TL for green lights

Interval
Timer

Traffic Light
Controller

ST

TL

TS

ST

TS

TL

short

long

16CSE370, Lecture 24

Example: traffic light controller

◆ Inputs Description
reset place FSM in initial state
C detect vehicle on the farm road
TS short time interval expired
TL long time interval expired

◆ Outputs Description
HG, HY, HR assert green/yellow/red highway lights
FG, FY, FR assert green/yellow/red farm road lights
ST start timing a short or long interval

◆ States – some light configurations imply others

State Description
HG highway green (farm road red)
HY highway yellow (farm road red)
FG farm road green (highway red)
FY farm road yellow (highway red)

17CSE370, Lecture 24

HG

HY

HR

Example: traffic light controller

Interval
Timer

Traffic Light
Controller

ST

TL

TS

Creset

FG FY FR

18CSE370, Lecture 24

Example: traffic light controller

◆ State diagram

Reset

TS'

TS / ST

(TL•C)'

TL•C / ST

TS'

TS / ST

(TL+C')'

TL+C' / ST

HG

FG

FYHY

Outputs not shown:
FR=HG+HY

HR=FG+FY

19CSE370, Lecture 24

Example: State Partitioning

TS / ST

Reset

TL•C / ST

TS' HY

(TL•C)'

HG

TS / ST

(TL+C')'

TL+C' / ST

FG

FY TS'

20CSE370, Lecture 24

State partitioning for traffic light controller

Reset

(TL+C')'

TL+C' / ST

FG

FY

TL•C / ST

TS' HY

(TL•C)'

HG

TS / ST

TS / ST
HR

TS•FY

TS•HY

(TS•HY)’

(TS•FY)’

FR

Reset

Add idle states

Add return arcs

Label idle wait loops

TS'

21CSE370, Lecture 24

Minimize communication between partitions

◆ Ideal world: Two machines handoff control
■ Separate I/O, states, etc.

◆ Real world: Minimize handoffs and common I/O
■ Minimize number of state bits that cross boundary

■ Merge common outputs

◆ Look for:
■ Disjoint inputs used in different regions of state diagram

■ Outputs active in only one region of state diagram

■ Isomorphic portions of state diagram
� Add states, if necessary, to make them so

■ Regions of diagram with a single entry and single exit point

22CSE370, Lecture 24

FSM design: A multi-step process

1. Understand the problem
– State diagram and state-transition table

2. Determine the machine’s states
– Consider missing transitions: Will the machine start?

– Minimize the state diagram: Reuse states where possible

3. Encode the states
– Encode states, outputs with a reasonable encoding choice

– Consider the implementation target

4. Design the next-state logic
– Minimize the combinational logic

– Choices made in steps 2 & 3 affect the logic complexity

5. Implement the FSM

