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Lecture 19

◆ Logistics 
■ Lab 8 this week to be done in pairs

� Find a partner before your lab period 
� Otherwise you will have to wait for a pairing which will slow you down

■ HW5 and HW6 solutions out today
■ HW7 out today due Wednesday March 4
■ Midterm 2 Wednesday 

� Covers material up to simple FSM
� Review session tomorrow, 4:30 here, EEB 037

◆ Last lecture
■ Counter FSM design
■ General Finite State Machine Design

� Vending machine example

◆ Today
■ Moore/Mealy machines
■ Midterm 2 topics and logistics
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The “WHY” slide

◆ Moore/Mealy machines
■ There are two different ways to express the FSMs with 

respect to the output.  Both have different advantages so it is 

good to know them.  
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Generalized FSM model: Moore and Mealy

◆ Combinational logic computes next state and outputs
■ Next state is a function of current state and inputs

■ Outputs are functions of 
� Current state (Moore machine) 

� Current state and inputs (Mealy machine)
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Moore versus Mealy machines
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Impacts start of the FSM design procedure

■ Counter-design procedure
1.  State diagram

2.  State-transition table

3.  Next-state logic minimization

4.  Implement the design

■ FSM-design procedure
1. State diagram

2. State-transition table

3.  State minimization 

4.  State encoding

5.  Next-state logic minimization

6.  Implement the design
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State Diagrams

◆ Moore machine
■ Each state is labeled by a pair: 

state-name/output     or    state-name [output]

◆ Mealy machine
■ Each transition arc is labeled by a pair:   

input-condition/output
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Example 10 → 01: Moore or Mealy?

◆ Circuits recognize AB=10 followed by AB=01 
■ What kinds of machines are they?

Moore

Mealy
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Example “01 or 10” detector: a Moore machine

◆ Output is a function of state only
■ Specify output in the state bubble

D/1
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reset

current next current
reset input state state output

1 – – A 0
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B D 0
0 0 C E 0
0 1 C C 0
0 0 D E 1
0 1 D C 1
0 0 E B 1
0 1 E D 1
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Example “01 or 10” detector: a Mealy machine

◆ Output is a function of state and inputs
■ Specify outputs on transition arcs

current next current
reset input state state output

B
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0/0

0/0
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reset/0

1 – – A 0
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B C 1
0 0 C B 1
0 1 C C 0
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Comparing Moore and Mealy machines

◆ Moore machines 
+ Safer to use because outputs change at clock edge

– May take additional logic to decode state into outputs

◆ Mealy machines
+ Typically have fewer states

+ React faster to inputs — don't wait for clock

– Asynchronous outputs can be dangerous

◆ We often design synchronous Mealy machines
■ Design a Mealy machine

■ Then register the outputs
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Synchronous (registered) Mealy machine

◆ Registered state and registered outputs
■ No glitches on outputs

■ No race conditions between communicating machines
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Example “=01”: Moore or Mealy?

◆ Recognize AB = 01
■ Mealy or Moore?

Registered Mealy 
(actually Moore)

Moore
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Example: A parity checker 

◆ Serial input string
■ OUT=1 if odd # of 1s in input

■ OUT=0 if even # of 1s in input

◆ Let’s do this for Moore and Mealy
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Example: A parity checker 
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Example: A parity checker 

Present         Input           Next       Present
State State Output

Even 0 Even 0
Even 1 Odd 0
Odd 0 Odd 1
Odd 1            Even 1

1. State-transition table

Present         Input           Next       Present
State State Output

Even 0 Even 0
Even 1 Odd 1
Odd 0 Odd 1
Odd 1            Even 0

Moore

Mealy
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3.  State minimization: Already minimized
■ Need both states (even and odd)

■ Use one flip-flop

Example: A parity checker 
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4.  State encoding

Present         Input          Next         Present
State State Output

0 0 0 0
0 1 1 0
1 0 1 1
1 1             0 1

Assignment 
Even 0
Odd  1

Present         Input          Next         Present
State State Output

0 0 0 0
0 1 1 1
1 0 1 1
1 1             0 0

Moore

Mealy

Example: A parity checker
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Example: A parity checker

5.  Next-state logic minimization
■ Assume D flip-flops

■ Next state = (present state) XOR (present input)

6.  Implement the design
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What was covered after midterm 1

◆ Combinational logic applications
■ PLAs/PALs

■ ROMs

■ Adders

■ Multi-level logic

■ Timing diagrams

■ Hazards

1010
+ 0110

-------------
????
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What was covered after midterm 1

◆ Sequential logic building blocks
■ Latches (R-S and D)

■ Flip-flops (D and T)

■ Latch and flip-flop timing (setup/hold time, prop delay)

■ Timing diagrams

■ Asynchronous inputs and metastability

■ Registers

Remember that 
the last number was 1
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What was covered after midterm 1

◆ Counters
■ Timing diagrams

■ Shift registers

■ Ring counters

■ State diagrams and state-transition tables

■ Counter design procedure
1.  Draw a state diagram

2.  Draw a state-transition table

3.  Encode the next-state functions

4.  Implement the design

■ Self-starting counters

1, 2, 3, 4, …
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◆ Finite state machines 
■ FSM design procedure

1. State diagram

2. State-transition table

3.  State minimization 

4.  State encoding

5.  Next-state logic minimization

6. Implement the design

� No Mealy machines

What was covered after midterm 1

The last coin was 25cents and 
already had 50cents deposited 

so let’s pop out a soda

Don’ t expect to know a ton of FSM.

Just understand what was presented in the lectures.
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Midterm 2 logistics

◆ 45 minutes long (starts 10:35)

◆ Materials covered from
■ Lectures 9 to 18 (but not Sequential Verilog or Moore/Mealy)

■ HW 4, 5, and 6

◆ Closed book/notes, no calculator

◆ Scratch papers provided

◆ Just have your pencil/pen and eraser

◆ Raise hand for questions (don’t walk to get help)


