
1CSE370, Lecture 19

Lecture 19

◆ Logistics
■ Lab 8 this week to be done in pairs

� Find a partner before your lab period
� Otherwise you will have to wait for a pairing which will slow you down

■ HW5 and HW6 solutions out today
■ HW7 out today due Wednesday March 4
■ Midterm 2 Wednesday

� Covers material up to simple FSM
� Review session tomorrow, 4:30 here, EEB 037

◆ Last lecture
■ Counter FSM design
■ General Finite State Machine Design

� Vending machine example

◆ Today
■ Moore/Mealy machines
■ Midterm 2 topics and logistics

2CSE370, Lecture 19

The “WHY” slide

◆ Moore/Mealy machines
■ There are two different ways to express the FSMs with

respect to the output. Both have different advantages so it is

good to know them.

3CSE370, Lecture 19

Inputs

Outputs

Next State

Current State

output
logic

Next-state
logic

Generalized FSM model: Moore and Mealy

◆ Combinational logic computes next state and outputs
■ Next state is a function of current state and inputs

■ Outputs are functions of
� Current state (Moore machine)

� Current state and inputs (Mealy machine)

4CSE370, Lecture 19

Moore versus Mealy machines

outputs

state feedback

inputs

reg

combinational
logic for
next state logic for

outputs

Moore machine
Outputs are a function

of current state

Outputs change
synchronously with

state changes

Mealy machine

Outputs depend on state
and on inputs

Input changes can cause
immediate output changes
(asynchronous)

inputs outputs

state feedback

reg
combinational

logic for
next state

logic for
outputs

5CSE370, Lecture 19

Impacts start of the FSM design procedure

■ Counter-design procedure
1. State diagram

2. State-transition table

3. Next-state logic minimization

4. Implement the design

■ FSM-design procedure
1. State diagram

2. State-transition table

3. State minimization

4. State encoding

5. Next-state logic minimization

6. Implement the design

6CSE370, Lecture 19

State Diagrams

◆ Moore machine
■ Each state is labeled by a pair:

state-name/output or state-name [output]

◆ Mealy machine
■ Each transition arc is labeled by a pair:

input-condition/output

7CSE370, Lecture 19

D Q

Q

D Q

Q

D Q

Q

D Q

Q

A

B

clock

out

D Q

Q

D Q

Q

A

B

clock

out

Example 10 → 01: Moore or Mealy?

◆ Circuits recognize AB=10 followed by AB=01
■ What kinds of machines are they?

Moore

Mealy
8CSE370, Lecture 19

Example “01 or 10” detector: a Moore machine

◆ Output is a function of state only
■ Specify output in the state bubble

D/1

E/1

B/0

A/0

C/0

1

0

0

0
0

1

1

1

1

0

reset

current next current
reset input state state output

1 – – A 0
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B D 0
0 0 C E 0
0 1 C C 0
0 0 D E 1
0 1 D C 1
0 0 E B 1
0 1 E D 1

9CSE370, Lecture 19

Example “01 or 10” detector: a Mealy machine

◆ Output is a function of state and inputs
■ Specify outputs on transition arcs

current next current
reset input state state output

B

A

C

0/1

0/0

0/0

1/1

1/0

1/0

reset/0

1 – – A 0
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B C 1
0 0 C B 1
0 1 C C 0

10CSE370, Lecture 19

Comparing Moore and Mealy machines

◆ Moore machines
+ Safer to use because outputs change at clock edge

– May take additional logic to decode state into outputs

◆ Mealy machines
+ Typically have fewer states

+ React faster to inputs — don't wait for clock

– Asynchronous outputs can be dangerous

◆ We often design synchronous Mealy machines
■ Design a Mealy machine

■ Then register the outputs

11CSE370, Lecture 19

Synchronous (registered) Mealy machine

◆ Registered state and registered outputs
■ No glitches on outputs

■ No race conditions between communicating machines

inputs outputs

state feedback

reg
combinational

logic for
next state

logic for
outputs

reg

12CSE370, Lecture 19

D Q

Q
B

A

clock

out

D Q

Q

D Q

Qclock

outA

B

Example “=01”: Moore or Mealy?

◆ Recognize AB = 01
■ Mealy or Moore?

Registered Mealy
(actually Moore)

Moore

13CSE370, Lecture 19

Example: A parity checker

◆ Serial input string
■ OUT=1 if odd # of 1s in input

■ OUT=0 if even # of 1s in input

◆ Let’s do this for Moore and Mealy

14CSE370, Lecture 19

Example: A parity checker

Even
[0]

Odd
[1]

0

1 1

1. State diagram

Moore Mealy

Even
[0]

Odd
[1]

0

1 1

0/0

1/1 1/0

0/1

15CSE370, Lecture 19

Example: A parity checker

Present Input Next Present
State State Output

Even 0 Even 0
Even 1 Odd 0
Odd 0 Odd 1
Odd 1 Even 1

1. State-transition table

Present Input Next Present
State State Output

Even 0 Even 0
Even 1 Odd 1
Odd 0 Odd 1
Odd 1 Even 0

Moore

Mealy

16CSE370, Lecture 19

3. State minimization: Already minimized
■ Need both states (even and odd)

■ Use one flip-flop

Example: A parity checker

17CSE370, Lecture 19

4. State encoding

Present Input Next Present
State State Output

0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 1

Assignment
Even 0
Odd 1

Present Input Next Present
State State Output

0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 0

Moore

Mealy

Example: A parity checker

18CSE370, Lecture 19

Example: A parity checker

5. Next-state logic minimization
■ Assume D flip-flops

■ Next state = (present state) XOR (present input)

6. Implement the design

CLK

Input
Output

D Q

Q

CLK

Input
Current
State

D Q

Q

OutputMoore

Mealy

19CSE370, Lecture 19

What was covered after midterm 1

◆ Combinational logic applications
■ PLAs/PALs

■ ROMs

■ Adders

■ Multi-level logic

■ Timing diagrams

■ Hazards

1010
+ 0110

????

20CSE370, Lecture 19

What was covered after midterm 1

◆ Sequential logic building blocks
■ Latches (R-S and D)

■ Flip-flops (D and T)

■ Latch and flip-flop timing (setup/hold time, prop delay)

■ Timing diagrams

■ Asynchronous inputs and metastability

■ Registers

Remember that
the last number was 1

21CSE370, Lecture 19

What was covered after midterm 1

◆ Counters
■ Timing diagrams

■ Shift registers

■ Ring counters

■ State diagrams and state-transition tables

■ Counter design procedure
1. Draw a state diagram

2. Draw a state-transition table

3. Encode the next-state functions

4. Implement the design

■ Self-starting counters

1, 2, 3, 4, …

22CSE370, Lecture 19

◆ Finite state machines
■ FSM design procedure

1. State diagram

2. State-transition table

3. State minimization

4. State encoding

5. Next-state logic minimization

6. Implement the design

� No Mealy machines

What was covered after midterm 1

The last coin was 25cents and
already had 50cents deposited

so let’s pop out a soda

Don’ t expect to know a ton of FSM.

Just understand what was presented in the lectures.

23CSE370, Lecture 19

Midterm 2 logistics

◆ 45 minutes long (starts 10:35)

◆ Materials covered from
■ Lectures 9 to 18 (but not Sequential Verilog or Moore/Mealy)

■ HW 4, 5, and 6

◆ Closed book/notes, no calculator

◆ Scratch papers provided

◆ Just have your pencil/pen and eraser

◆ Raise hand for questions (don’t walk to get help)

