
1CSE370, Lecture 13

Lecture 13

◆ Logistics
■ HW5 due date delayed until next Friday, Feb 13 in class

� Requires work with Altec software
� Check the online version for the test fixtures

■ Lab 6 will be a bit shorter than most so you should have a
chance to catch up if you are behind

◆ Last lecture
■ Adders

◆ Today
■ Questions about Combinational Logic?
■ Introduction to Sequential Logic

� The basic concepts
� An example

2CSE370, Lecture 13

We've finished combinational logic...

■ Negative numbers in binary
■ Truth tables
■ Basic logic gates
■ Schematic diagrams
■ Minterm and maxterm expansions (canonical, minimized)
■ de Morgan's theorem
■ AND/OR to NAND/NOR logic conversion
■ K-maps, logic minimization, don't cares
■ Multiplexers/demultiplexers
■ PLAs/PALs
■ ROMs
■ Multi-level logics
■ Timing diagrams
■ Hazards
■ Adders

We had no way to store memory:
When the input changed, the output changed

Next: Sequential logic can store memory…

Questions ?

3CSE370, Lecture 13

Sequential Logic (next 5 weeks!)

◆ We learn the details
■ Latches, flip-flops, registers (storage)
■ Shift registers, counters (we can count now!)
■ State machines (when we can store, we have states)
■ Moore and Mealy machines (types of state machines)
■ Timing and timing diagrams

� timing more important than for combinational logic

■ Synchronous and asynchronous inputs
� Metastability (problem!)

4CSE370, Lecture 13

The “WHY” slide

◆ Learning sequential logic
■ Having the ability to hold memory is important. If you

couldn’t use your prior knowledge stored in the memory, you
wouldn’t be very smart (and same goes for a computer).

5CSE370, Lecture 13

Sequential versus combinational

B

A
C

clock

Apply fixed inputs A, B
When the clock ticks, the output becomes available

Observe C
Wait for another clock tick

Observe C again

Combinational: C will stay the same
Sequential: C may be different

6CSE370, Lecture 13

Sequential versus combinational

◆ Combinational systems are memoryless
■ Outputs depend only on the present inputs

◆ Sequential systems have memory
■ Outputs depend on the present and the previous inputs

Inputs OutputsSystem

Inputs
OutputsSystem

Feedback

7CSE370, Lecture 13

Synchronous sequential systems

◆ Memory holds a system’s state
■ Changes in state occur at specific times
■ A periodic signal times or clocks the state changes
■ The clock period is the time between state changes

period

duty cycle = pulsewidth/period

(here it is 50%)

pulsewidth

B

A
C

clock
State changes occur

at rising edge of clock

clock

8CSE370, Lecture 13

Steady-state abstraction

◆ Outputs retain their settled values
■ The clock period must be long enough for all voltages to

settle to a steady state before the next state change

B

A
C

clock

clock

C

Settled value

Clock hides transient

behavior

9CSE370, Lecture 13

What did I just say about sequential logic?

◆ Has clock (mostly - always for us)
■ Synchronous = clocked
■ Exception: Asynchronous circuits

◆ Has state
■ State = memory

◆ Employs feedback

◆ Assumes steady-state signals
■ Signals are valid after they have settled
■ State elements hold their settled output values

10CSE370, Lecture 13

Example: A sequential system

◆ Door combination lock
■ Enter three numbers in sequence and the door opens
■ As each new number is entered, press ‘new’ (like `enter’)
■ If there is an error the lock must be reset
■ After the door opens the lock must be reset
■ Inputs: Sequence of numbers, reset, new
■ Outputs: Door open/close
■ Memory: Must remember the combination

We will go through the motion of designing a real system

We will teach details of “how” to do these steps
in the next few weeks

11CSE370, Lecture 13

Understand the problem

◆ Consider I/O and unknowns
■ How many bits per input?
■ How many inputs in sequence?
■ How do we know a new input is entered?
■ How do we represent the system states?

resetvalue

open/closed

new

clock

12CSE370, Lecture 13

Implement using sequential logic

◆ Behavior
■ Clock tells us when to look at inputs

� After inputs have settled

■ Sequential: Enter sequence of numbers
■ Sequential: Remember if error occurred

◆ A diagram may be helpful
■ Assume synchronous inputs
■ State sequence

� Enter 3 numbers serially
� Remember if error occurred

■ All states have outputs
� Lock open or closed

resetvalue

open/closed

new

clock

13CSE370, Lecture 13

A diagram (called finite-state diagram)

◆ States: 5
■ Each state has outputs

◆ Outputs: open/closed

◆ Inputs: reset, new, results of
comparisons

■ Assume synchronous inputs

closed closedclosed
C1== value

& new
C2== value

& new
C3== value

& new

C1!= value
& new

C2!= value
& new

C3!= value
& new

closed

reset

not newnot newnot new

S1 S2 S3 OPEN

ERR

open

We use state diagrams to
represent sequential logic

System transitions between
finite numbers of states

Shorthand: implies
arrow from every state
labeled ‘reset’

14CSE370, Lecture 13

Separate data path and control

◆ Data path
■ Stores combination
■ Compares inputs with

combination

◆ Control
■ Finite state-machine controller
■ Control for data path
■ State changes clocked

reset

open/closed

newC1 C2 C3

comparatorvalue
equal

multiplexer

controller

mux
control

clock
4

4 4 4

4

15CSE370, Lecture 13

Refine diagram; generate state table

◆ Refine state diagram to
include internal structure

◆ Generate
state table

closed

closed
mux=C1reset equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 S3 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

reset new equal state state mux open/closed
1 – – – S1 C1 closed
0 0 – S1 S1 C1 closed
0 1 0 S1 ERR – closed
0 1 1 S1 S2 C2 closed
...
0 1 1 S3 OPEN – open
...

next

16CSE370, Lecture 13

Encode state table

◆ State can be: S1, S2, S3, OPEN, or ERR
■ Need at least 3 bits to encode: 000, 001, 010, 011, 100
■ Can use 5 bits: 00001, 00010, 00100, 01000, 10000
■ Choose 4 bits: 0001, 0010, 0100, 1000, 0000

◆ Output to mux can be: C1, C2, or C3
■ Need 2 or 3 bits to encode
■ Choose 3 bits: 001, 010, 100

◆ Output open/closed can be: Open or closed
■ Need 1 or 2 bits to encode
■ Choose 1 bit: 1, 0

17CSE370, Lecture 13

reset new equal state state mux open/closed
1 – – – 0001 001 0
0 0 – 0001 0001 001 0
0 1 0 0001 0000 – 0
0 1 1 0001 0010 010 0
...
0 1 1 0100 1000 – 1
...

next

Encode state table (con’t)

◆ Good encoding choice!
■ Mux control is identical to last 3 state bits
■ Open/closed is identical to first state bit
■ Output encoding ⇒ the outputs and state bits are the same

18CSE370, Lecture 13

reset

open/closed

new equal

mux
control

clock

comb. logic

state

special circuit element,
called a register, for
storing inputs when
told to by the clock

Implementing the controller

◆ We will learn how to
design the controller
given the encoded
state-transition table

19CSE370, Lecture 13

C1 C2 C3

comparator equal

multiplexer

mux
control

4

4 4 4

4
value

C1i C2i C3i

mux
control

valuei

equal

Designing the datapath

■ Four multiplexers
� 2-input ANDs and 3-input OR

■ Four single-bit comparators
� 2-input XNORs

■ 4-input AND

20CSE370, Lecture 13

Where did we use memory?

◆ Memory: Stored combination, state (errors or
successes in past inputs)

reset

open/closed

new

C1 C2 C3

comparator

value

equal

multiplexer

equal

controller
mux
control

clock

21CSE370, Lecture 13

Where did we use feedback?

◆ Feedback: Comparator output ("equal" signal)

reset

open/closed

new

C1 C2 C3

comparator

value

equal

multiplexer

equal

controller
mux
control

clock

22CSE370, Lecture 13

Where did we use clock?

◆ Clock synchronizes the inputs
■ Accept inputs when clock goes high

◆ Controller is clocked
■ Mux-control and open/closed signals change on the clock edge

reset

open/closed

new

C1 C2 C3

comparator

value

equal

multiplexer

equal

controller
mux
control

clock

