Lecture 12

O Logistics
= HW4 due today
O Last lecture

= Timing diagrams
= Hazards

O Today
= Time/space trade offs: Parallel prefix trees
= Adders
= The conclusion of combinational logic!!!

CSE370, Lecture 12

The “"WHY" slide

O Timing/space trade offs
= In real life, complex logic circuits you will work on will not
have one minimum circuit. You will have to learn to
understand what parameters to optimize your design on, and
be able to come up with “trade offs” suitable for your
application or customer’s needs.

O Adders
= Arithmetic logic units (ALUs) such as adders and multipliers
perform most computer instructions. Therefore, it is critical to
know how they works, how they scale, and how they may be
optimized for time/space.

CSE370, Lecture 12 2

What do we mean by time/speed
tradeoff?: Linear chains vs. trees

O Lets say we want to implement an 8-input OR function
with only 2-input gates

Gates: 7
Max delay: 7

CSE370, Lecture 12 3

Linear chains vs. trees

0 Now consider the tree version

Gates: 7
Max delay: 3

%

CSE370, Lecture 12 4

And now we change the problem slightly

O Build a circuit that takes 8 single bit inputs and
calculates the OR of the first 2, the OR of the first 3,
the OR of the first 4, and so on, up to the OR of all 8

Gates: 7
Max delay: 7

CSE370, Lecture 12 5

A parallel version of the prefix circuit

Gates: 12
Max delay: 3

CSE370, Lecture 12 6

The parallel prefix OR circuit

1 Parallel Prefix
: n inputs

n/2 OR gates
g ——T—] ——D‘Ir 0,1 per level
1
1
' Parallel Prefix) D+ log,n levels

n/2 inputs
] 1 oF

1 Parallel Prefix
7: n2inputs |
1

CSE370, Lecture 12 7

Binary half adder

0 1-bit half adder
= Computes sum, carry-out
< No carry-in
= Sum =AB + AB'=AxorB
= Cout = AB

XOR

B QD__ Sum

ANDZ

>

A——{ Half [— Sum
B——{ Adder [—— Cout

— Cout

CSE370, Lecture 12 8

Binary full adder

O 1-bit full adder
= Computes sum, carry-out
% Carry-in allows cascaded adders
= Sum = Cin xor A xor B
= Cout = ACin + BCin + AB

A
0
0
0
0
1
1
1
1

R oOrroOow
—~OrORORON
~roOOrRORKROWN
=R OROOOoN

A ——

Full [— Sum
Adder —— Cout

Cout B —

Cin —|

CSE370, Lecture 12 9

Full adder: using 2 half adders

0 Multilevel logic g g ﬁ‘" ; g g‘ %m
= Slower 00 1 |1 o 0
= Fewer gates o1 0 |1 o 0
% 2 XORs, 2 ANDs, 1 OR 01 1 |lo 1 1
. 1 0 0 (1 0 0
Sum = (A0 B) O Cin 10 1 o 1 1
Cout = ACin + BCin + AB 11 0 |0 1 1
= (A 0 B)Cin + AB 111 1 1 1
i [
Al Pi !
Bi QD k?JDi si
Ai 7 Gi
Bi 37 * 1=
i
“ Ci+1
40,
CSE370, Lewre 1c o

4-bit ripple-carry adder (also subtracts)

A3 B3 B3 A2 B2 B2 Al B1B1' AO BO BO'

LTI T T
e e e

I ! I
A B B A B A B
. . . 0 <> Add
Cout Cinf——Cout Cink—Cout Cine—ICout Cin| 1 Subtract
Sum Sum Sum Sum

S3 S2 S1 SO
Overflow

0 Easy to convert to subtractor using twos complement
= Twos complement: A-B=A+(-B)=A+B' +1

CSE370, Lecture 12 11

Problem: Ripple-carry delay

0 Carry propagation limits adder speed
SR 0111 A

@0 A
ok ;)) >: i +0001 B
008 W | g o +0001 B
e) >— sum 1600
@2N Cin . @2N+1 AD —| S0 @2 .
s Exceptwhen N=0 BO—»| cl@2
@0 B

@2N Cin Al—s| S1 @3
R B1—| Cc2 @4
@ A \C'@OZUT+2
@2N Cin a2 s265
s

@0 A B2— lc3 @6

@0 B

il C,.: takes two gate delays

out = 9 4 A3 S3 @7
C,, arrives late B3—| Cout @8

CSE370, Lecture 12 12

Can we be clever and speed this up?

O Let's compute all the carries in parallel
= Derive carries from the data inputs BO—»
< Not from intermediate carries
< Use two-level logic
= Compute all sums in parallel Bl—|

= How do we do that??? B2—|

CSE370, Lecture 12 13

Speeding up the adder

0 Need to find a way to “predict” Cout for all bits
O Without knowing what Cin is Coutisalways0 + 8

Predict Cout

Coutis 0if Cinis 0 0
Coutis 1if Cinis 1 + 1

Call this PROPAGATE predict Cout

0 Let's try all cases: Coutis 0if Cinis 0
X Coutis 1if Cinis 1 . g-)
0o A=0,B=0hbutnotsurgofCin _*°
. Predict Cout
0 A=0, B=1 but not sure of Cin - 1
Cout is always 1 i1
0 A=1,B =0 butnot sure of Cin e
Predict Cout

0

A =1, B =1 butnot sure of Cin

Call this GENERATE
CSE370, Lecture 12 14

Solution: Create a carry lookahead logic
Step 1: Getting Pi an Gi

Half Adder p yor g Half Adder p yor B xor Cin
Sum

A Sum[— . Sum
BE' Couti:“‘s C' cQutEC'"(A xor B)
Cin Cout

Ci+1

0,

O Carry generate: G, = AB;

= Generate carry whenA=B =1
O Carry propagate: P; = A, xor B;
= Propagate carry-in to carry-out when (A xor B) = 1

CSE370, Lecture 12 15

Solution: Carry-lookahead logic
Step 2: Calculate Sum and Cout

0 Sum and Cout in terms of generate/propagate:

= 5, = A xor B, xor C

=P, xor G
= G, 1= AB; + C(A, xor B)
=G + CP,
gu D} > Pi]) > s
;I ;I) Gi
¢ Ci+1
CSE370, Lecture 12 16

Solution: Carry-lookahead logic
Step 3: Express all carries in terms of CO

O Re-express the carry logic in terms of G and P
C, = Gy + PGy
C, =G, + P,C, = G, + P,G, + P,P,C,
Cy = G, + P,C, = G, + P,G, + P,P,G, + P,P,P,C,
C, = Gy + PG, = G; + P3G, + P3P,G, + P;P,P,G, + P3P,P,PCy

O Implement each carry equation with two-level logic
= Derive intermediate results directly from inputs
< Rather than from carries
= Allows "sum" computations to proceed in parallel

CSE370, Lecture 12 17

Solution: carry-lookahead logic
Step 4: implement with 2-level logic

Al) > Pi @ 1 gate delay Logic comp\e_xihty
D) increases witl
. Si @ 2 gate delays .
a adder size

Gi @ 1 gate delay

CSE370, Lecture 12 18

Solution: Carry lookahead logic

O Get Pi (propagate) and Gi (generate

KOR

@0
B = :XOR —
’ DSUM @ 75 PDSO@2
Cin < @3 (Bo—» GO 1@
@4
p1|Lst09)
Gl lc2 @d @3

Cin
A
. Cout P2 S2 @C@4
Cin G2 C3 BE03
A C, =G, +P,C = G, + P,Gy + P,P,C,y

i @4
B C4=G,+P,C, P sag
C =Gt PG =G, + P,G, + P,P,Gg + P,P,P,Cp C4
1 0 o~o @3

C,=Gy+ PyCy
=Gy + P3G, + P3P,G; + P3P,P, Gy + P3P,P,PyCy
CSE370, Lecture 12 19

Carry lookahead logic summary

0 Compute all the carries in parallel

= Derive carries from the data inputs Cin——
% Not from intermediate carries ‘5‘04’
& Use two-level logic 0—
= Compute all sums in parallel cres
Al—>
0 Cascade simple adders to make Bl—s|
large adders C2@3——y
A2—s|
0 Speed improvement B2—>|
i . i c3 @3
0 Complex combinational logic JEN
B3 —»|
C4 @3

CSE370, Lecture 12

S0 @2

S1@4

S2 @4

S3 @4

C4 @3

We've finished combinational logic...

Negative numbers in binary

Truth tables

Basic logic gates

Schematic diagrams

Minterm and maxterm expansions (canonical, minimized)
de Morgan's theorem

AND/OR to NAND/NOR logic conversion
K-maps, logic minimization, don't cares
Multiplexers/demultiplexers

PLAs/PALs

= ROMs

Multi-level logics

Timing diagrams

Hazards

Adders

CSE370, Lecture 12 21

