Logistics

- Always read the Calendar at http://www.cs.washington.edu/370
- HW1 is posted on the web in the calendar --- due 1/14 11:30am
- Email list: please sign up on the web via the link from the course homepage
- TA Office Hours:
 - Josh Snyder Mondays 3:30-4:20, CSE 220
 - Aaron Miller Tuesdays 12:30-1:20, CSE 220
 - Sara Rolfe Tuesdays 2:30-3:20, CSE 220
- My Office Hours:
 - Mondays 12:20-1:00, CSE 668 (grab me after class)
 - TBA

CSE370, Lecture 2

Lecture 2: Number Systems

- Last lecture
- Class introduction and overview
- Today
 - Binary numbers
 - Base conversion
 - Number systems
 - Twos-complement A/D and D/A conversion

There are 10 kinds of people in the world. Those who understand binary... and those who don't.

CSE370, Lecture 2

The "WHY" slide

- Binary numbers
 - All computers work with 0's and 1's so it is like learning alphabets before learning English
- Base conversion
 - For convenience, people use other bases (like decimal, hexdecimal) and we need to know how to convert from one to another.
- Number systems
 - There are more than one way to express a number in binary. So 1010 could be 10, -2, -5 or -6 and need to know which one.
- ◆ A/D and D/A conversion
 - Real world signals come in continuous/analog format and it is good to know generally how they become 0's and 1's (and vice

CSE370, Lecture 2

Digital

- Digital = discrete
 - Binary codes (example: BCD)
 - Decimal digits 0-9
- Binary codes
 - Represent symbols using binary digits (bits)
- Digital computers:
 - I/O is digital

 - ASCII, decimal, etc.
 Internal representation is binary
 - Process information in bits

CSE370, Lecture 2

Decimal	BCD
<u>Symbols</u>	Code
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

The basics: Binary numbers

- Bases we will use
 - Binary: Base 2

 - Decimal: Base 10
 - Hexadecimal: Base 16 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Positional number system
 - $101_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$ $63_8 = 6 \times 8^1 + 3 \times 8^0$ $A1_{16} = 10 \times 16^1 + 1 \times 16^0$
- Addition and subtraction

CSE370, Lecture 2

Binary → hex/decimal/octal conversion

- Conversion from binary to octal/hex
 - Binary: 10011110001
 - Octal: 10 | 011 | 110 | 001=2361₈
 - 100 | 1111 | 0001=4F1₁₆
- Conversion from binary to decimal
 - $\begin{array}{c} \bullet \quad 101_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 5_{10} \\ \bullet \quad 63.4_8 = 6 \times 8^1 + 3 \times 8^0 + 4 \times 8^{-1} = 51.5_{10} \\ \bullet \quad A1_{16} = 10 \times 16^1 + 1 \times 16^0 = 161_{10} \\ \end{array}$

CSE370, Lecture 2

Decimal→ binary/octal/hex conversion

<u>Binary</u>			<u>Octal</u>			
Q	uotient	Remainder	Quotient Remainder			
56÷2=	28	0	56÷8= 7 0			
28÷2=	14	0	7÷8= 0 7			
14÷2=	7	0				
7÷2=	3	1				
3÷2=	1	1	$56_{10}=111000_2$			
$1 \div 2 =$	0	1	$56_{10}=70_8$			

- Why does this work?
 - N=56₁₀=111000₂
 - Q=N/2=56/2=111000/2=11100 remainder 0
- Each successive divide liberates an LSB (least significant bit)

CSE370, Lecture 2

Number systems

- How do we write negative binary numbers?
- Historically: 3 approaches
 - Sign-and-magnitude
 - Ones-complement
 - Twos-complement
- For all 3, the most-significant bit (MSB) is the sign
 - 0 ≡ positive
 - 1 ≡ negative
- twos-complement is the important one
 - Simplifies arithmetic
 - Used almost universally

CSE370, Lecture 2

Sign-and-magnitude

- The most-significant bit (MSB) is the sign digit
 - 0 ≡ positive
 - 1 ≡ negative
- The remaining bits are the number's magnitude
- Problem 1: Two representations for zero
 - 0 = 0000 and also -0 = 1000
- Problem 2: Arithmetic is cumbersome

Add	Subtract			Со	mpare and	subtract
4 0100	4	0100	0100	- 4	1100	1100
+ 3 + 0011	- 3	+ 1011	- 0011	+ 3	+ 0011	- 0011
= 7 = 0111	= 1	≠ 1111	= 0001	- 1	≠ 1111	= 1001

CSE370, Lecture 2

Ones-complement

- Negative number: Bitwise complement positive number
 - 0111 ≡ 7₁₀
 - $1000 \equiv -7_{10}$
- Solves the arithmetic problem

	Add	invert, add	i, add carry	Inver	t and add
4	0100	4	0100	- 4	1011
+ 3	+ 0011	- 3	+ 1100	+ 3	+ 0011
= 7	= 0111	= 1	1 0000	- 1	1110
		add carry:	+1		
			= 0001		

Remaining problem: Two representations for zero

0 = 0000 and also -0 = 1111

CSE370, Lecture 2

Why ones-complement works

- The ones-complement of an 8-bit positive y is 11111111₂ - y
- ♦ What is 11111111₂?

 - 1 less than 1 00000000₂ ≡ 2⁸ ≡ 256₁₀ So in ones-complement –y is represented by (2⁸ -1) y
- Adding representations of x and -y where x, y are positive we get $(2^8 - 1) + x - y$
 - If x < y then x y < 0 there is no carry and get -ve number Just add the representations if no carry
 - If x > y then x y > 0 there is a carry and get +ve number
 Need to add 1 and ignore the 2⁸, i.e. "add the carry"
 If x = y then answer should be 0, get 2⁸-1 =11111111₂

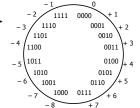
CSE370, Lecture 2

Twos-complement

- Negative number: Bitwise complement plus one
 - 0111 ≡ 7₁₀
 1001 ≡ -7₁₀
- Number wheel

Only one zero!

- MSB is the sign digit
- 0 = positive ■ 1 ≡ negative



CSE370, Lecture 2

Twos-complement (con't)

- Complementing a complement → the original number
- Arithmetic is easy
 - Subtraction = negation and addition
 - Easy to implement in hardware

	Add	Invert a	and add	Invert	and add
4	0100	4	0100	- 4	1100
+ 3	+ 0011	- 3	+ 1101	+ 3	+ 0011
= 7	= 0111	= 1	1 0001	- 1	1111
l		drop carry	= 0001		

CSE370, Lecture 2

Why twos-complement works better

- Recall: The ones-complement of a b-bit positive y is $(2^{b}-1) - y$
- Adding 1 to get the twos-complement represents –y by 2^b – y
 - So -y and 2^b y are equal mod 2^b (leave the same remainder when divided by 2^b)
 - Ignoring carries is equivalent to doing arithmetic mod 2^b
- Adding representations of x and -y yields $2^b + x y$
 - If there is a carry then that means $x \ge y$ and dropping the carry yields x-y
 - If there is no carry then x < y and then we can think of it as</p> 2^b - (y-x)

CSE370, Lecture 2

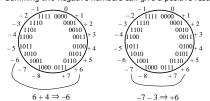
Miscellaneous

- Twos-complement of non-integers
 - 1.6875₁₀ = 01.1011₂
 - $-1.6875_{10} = 10.0101_2$
- Sign extension
 - Write +6 and −6 as twos complement 0110 and 1010
 - Sign extend to 8-bit bytes
 - 00000110 and 11111010
- Can't infer a representation from a number
 - 11001 is 25 (unsigned)
 - 11001 is –9 (sign magnitude) 11001 is –6 (ones complement)
 - 11001 is -7 (twos complement)

CSE370, Lecture 2

Twos-complement overflow

- Answers only correct mod 2^b
 - Summing two positive numbers can give negative result
 - Summing two negative numbers can give a positive result



• Make sure to have enough bits to handle overflow CSE370, Lecture 2

BCD (Binary-Coded Decimal) and Gray codes

Decimal	BCD
Symbols	Code
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Decimal	Gray
Symbols	Code
0	0000
1	0001
2	0011
3	0010
4	0110
5	0111
6	0101
7	0100
8	1100
۵	1101

Only one bit changes per step

CSE370, Lecture 2

The physical world is analog

- Digital systems need to
 - Measure analog quantities
 - Speech waveforms, etc
 - Control analog systems Drive motors, etc
- How do we connect the analog and digital domains?
 - Analog-to-digital converter (A/D)
 - Example: CD recording
 - Digital-to-analog converter (D/A)

 ⇒ Example: CD playback

CSE370, Lecture 2

