Lecture 22

- Logistics

- HW8 due Monday (6/2), HW9 due Friday (6/6)
- Ant extra credit due 6/6
- Take home extra credit final handed out 6/6
- Final exam 6/9 8:30am
- Review?
- Last lecture
- Simplification
- Today
- State encoding
\boldsymbol{k} One-hot encoding
\boldsymbol{k} Output encoding

Example: A vending machine

- 15 cents for a cup of coffee
- Doesn't take pennies or quarters
- Doesn't provide any change
- FSM-design procedure

1. State diagram
2. state-transition table
3. State minimization
4. State encoding
5. Next-state logic minimization
6. Implement the design

A vending machine: State minimization

A vending machine: State encoding

A

$\begin{aligned} & \text { present state } \\ & \text { Q1 00 } \\ & \hline \end{aligned}$	inputs	next state D1 D0	output open
	D N		
$\begin{gathered} \text { Q1 Q0 } \\ \hline 0 \quad 0 \end{gathered}$	00	00	0
	01	01	0
	10	10	0
	11	- -	-
01	00	01	0
	01	10	0
	10	11	0
	11	- -	-
10	00	10	0
	01	11	0
	10	11	0
	11	- -	-
11	- -	11	1

A vending machine: Logic minimization

 $$
\begin{aligned} & \mathrm{D} 1=\mathrm{Q} 1+\mathrm{D}+\mathrm{Q} 0 \mathrm{~N} \\ & \mathrm{D} 0=\mathrm{Q} 0^{\prime} \mathrm{N}+\mathrm{Q} 0 \mathrm{~N}^{\prime}+\mathrm{Q} 1 \mathrm{~N}+\mathrm{Q} 1 \mathrm{D} \\ & \mathrm{OPEN}=\mathrm{Q} 1 \mathrm{Q} 0 \end{aligned}
$$

A vending machine: Implementation

-

State encoding

- Assume n state bits and m states
- $2^{n!} /\left(2^{n}-m\right)$! possible encodings
\boldsymbol{K} Example: 3 state bits, 4 states, 1680 possible state assignments
- Want to pick state encoding strategy that results in optimizing your criteria
- FSM size (amount of logic and number of FFs)
- FSM speed (depth of logic and fan-in/fan-out)
- FSM ease of design or debugging

State-encoding strategies

- No guarantee of optimality
- An intractable problem
- Most common strategies
- Binary (sequential) - number states as in the state table
- Random - computer tries random encodings
- Heuristic - rules of thumb that seem to work well
\boldsymbol{K} e.g. Gray-code - try to give adjacent states (states with an arc between them) codes that differ in only one bit position
- One-hot - use as many state bits as there are states
- Output - use outputs to help encode states
- Hybrid - mix of a few different ones (e.g. One-hot + heuristic)

One-hot encoding

- One-hot: Encode n states using n flip-flops
- Assign a single " 1 " for each state

K Example: 0001, 0010, 0100, 1000

- Propagate a single " 1 " from one flip-flop to the next
\boldsymbol{K} All other flip-flop outputs are " 0 "
- The inverse: One-cold encoding
- Assign a single " 0 " for each state

K Example: 1110, 1101, 1011, 0111

- Propagate a single " 0 " from one flip-flop to the next \boldsymbol{K} All other flip-flop outputs are " 1 "
- "almost one-hot" encoding (modified one-hot encoding)
- Use no-hot (000...0) for the initial (reset state)
- Assumes you never revisit the reset state till reset again.

One-hot encoding (con't)

- Often the best/convenient approach for FPGAs
- FPGAs have many flip-flops
- Draw FSM directly from the state diagram
- + One product term per incoming arc
- - Complex state diagram \Rightarrow complex design
- - Many states \Rightarrow many flip flops

Example: A vending machine ... again

15 cents for a cup of coffee

- Doesn't take pennies or quarters

Doesn't provide any change

- FSM-design procedure

2. state-transition table
3. State minimization
4. State encoding
5. Next-state logic minimization
6. Implement the design

One-hot encoded transition table

Designing from the state diagram

Output encoding

- Reuse outputs as state bits
- Why create new functions when you can use outputs?
- Bits from state assignments are the outputs for that state
$\boldsymbol{\Sigma}$ Take outputs directly from the flip-flops

- ad hoc - no tools
- Yields small circuits for most FSMs

Vending machine --- already in output encoding form

$D_{0}=Q_{0} D^{\prime} N^{\prime}$
$\mathrm{D}_{1}=\mathrm{Q}_{0} \mathrm{~N}+\mathrm{Q}_{1} \mathrm{D}^{\prime} \mathrm{N}^{\prime}$
$D_{2}=Q_{0} D+Q_{1} N+Q_{2} D^{\prime} N^{\prime}$
$D_{3}=Q_{1} D+Q_{2} D+Q_{2} N+Q_{3}$
OPEN $=Q_{3}$

Example: Digital combination lock

- An output-encoded FSM
- Punch in 3 values in sequence and the door opens
- If there is an error the lock must be reset
- After the door opens the lock must be reset
- Inputs: sequence of number values, reset
- Outputs: door open/close

Separate data path and control

Design datapath first
 - Control has 2 outputs

- After the state diagram
- Before the state encoding
- Mux control to datapath
- Lock open/closed

Draw the state diagram

Design the datapath

- Choose simple control
- 3 -wire mux for datapath kControl is 001, 010, 100
- Open/closed bit for lock state \boldsymbol{k} Control is 0/1

Output encode the FSM

- FSM outputs
- Mux control is 100, 010, 001
- Lock control is $0 / 1$
- State are: S0, S1, S2, S3, or ERR
- Can use 3, 4, or 5 bits to encode
- Have 4 outputs, so choose 4 bits
\boldsymbol{K} Encode mux control and lock control in state bits
\boldsymbol{K} Lock control is first bit, mux control is last 3 bits

$$
S 0=0001 \text { (lock closed, mux first code) }
$$

S1 $=0010$ (lock closed, mux second code)
S2 $=0100$ (lock closed, mux third code)
S3 = 1000 (lock open)
$E R R=0000$ (error, lock closed)

FSM has 4 state bits and 2 inputs...

Output encoded!

- Outputs and state bits are the same
- How do we minimize the logic?
- FSM has 4 state bits and 2 inputs (equal, new)
- 6 -variable kmap?
- Notice the state assignment is close to one-hot
- ERR state (0000) is only deviation
- Is there a clever design we can use?

$\mathrm{D}_{0}=\mathrm{Q}_{0} \mathrm{~N}^{\prime}$
$\mathrm{D}_{1}=\mathrm{Q}_{0} \mathrm{EN}+\mathrm{Q}_{1} \mathrm{~N}^{\prime}$
$\mathrm{D}_{2}=\mathrm{Q}_{1} \mathrm{EN}+\mathrm{Q}_{2} \mathrm{~N}^{\prime}$
$\mathrm{D}_{3}=\mathrm{Q}_{2} \mathrm{EN}+\mathrm{Q}_{3}$
Can we encode the ERR state with reset/preset of flipflops?

Answer: Yes!

$$
\begin{aligned}
& \mathrm{D}_{0}=\mathrm{Q}_{0} \mathrm{~N}^{\prime} \\
& \mathrm{D}_{1}=\mathrm{Q}_{0} E N+\mathrm{Q}_{1} \mathrm{~N}^{\prime} \\
& \mathrm{D}_{2}=\mathrm{Q}_{1} E N+\mathrm{Q}_{2} \mathrm{~N}^{\prime} \\
& \mathrm{D}_{3}=\mathrm{Q}_{2} \mathrm{EN}+\mathrm{Q}_{3}
\end{aligned}
$$

Preset $_{0}=$ start
Preset $_{1,2,3}=0$
Reset $_{0}=\quad \operatorname{start}^{\prime}\left(\mathrm{E}^{\prime} \mathrm{N}+\left(\mathrm{Q}_{0}+\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3}\right)^{\prime}\right)$
Reset $_{1,2,3}=$ start $+\left(E^{\prime} N+\left(Q_{0}+Q_{1}+Q_{2}+Q_{3}\right)^{\prime}\right)$

CSE370, Lecture 22

FSM design

- FSM-design procedure

1. State diagram
2. state-transition table
3. State minimization
4. State encoding
5. Next-state logic minimization
6. Implement the design
