Lecture 17

- Logistics

- HW6 due today, HW7 out last Monday --- due on Monday
- Midterm review Tuesday 4:15pm Room TBA
- Last lecture
- Introduction to finite state machines
- Counters as finite state machines
- Today
- Finish counter design
- More complex finite-state machines
- Introduction of Moore and Mealy machines

Review: Counter design procedure

1. Draw a state diagram
2. Draw a state-transition table
3. Encode the next-state functions

- Minimize the logic using k-maps

4. Implement the design

Example: A 5-state counter

Example: A 5-state counter

Counter repeats 5 states in sequence

- Sequence is 000, 010, 011, 101, 110, 000 (not binary)

Step 1: State diagram
Step 2: State transition table
Assume D flip-flops

Present State	Next State				
C	B	A	C+	B+	A+ +
0	0	0	0	1	0
0	0	1	-	-	-
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	-	-	-
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	-	-	-

5-state counter (con't)

Step 3: Encode the next state functions

$C+=A$

$B+=B^{\prime}+A^{\prime} C^{\prime}$

$\mathrm{A}+=\mathrm{BC}^{\prime}$

5-state counter (con't)

Step 4: I mplement the design

5-state counter (con't)

- Is our design robust?
- What if the counter starts in a 111 state?

Does our counter get
stuck in invalid states???

5-state counter (con't)

- Back-annotate our design to check it

Fill in state transition table
Draw state diagram

	Presen	St			xt S	
	C	B	A	C+	B+	
	0	0	0	0	1	0
	0	0	1	1	1	0
	0	1	0	0	1	1
	0	1	1	1	0	1
	1	0	0	0	1	0
	1	0	1	1	1	0
	1	1	0	0	0	0
$\mathrm{A}+=\mathrm{BC}$	' 1	1	1	1	0	0
$\mathrm{B}+=\mathrm{B}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime}$						
$\mathrm{C}+=\mathrm{A}$						

Self-starting counters

- Invalid states should always transition to valid states
- Assures startup
- Assures bit-error tolerance
- Design your counters to be self-starting
- Draw all states in the state diagram
- Fill in the entire state-transition table
- May limit your ability to exploit don't cares
\boldsymbol{K} Choose startup transitions that minimize the logic

Finite state machines: more than counters

- FSM: A system that visits a finite number of logically distinct states
- Counters are simple FSMs
- Outputs and states are identical
- Visit states in a fixed sequence
- FSMs are typically more complex than counters
- Outputs can depend on current state and on inputs
- State sequencing depends on current state and on inputs

FSM design

- Counter-design procedure

1. State diagram
2. State-transition table
3. Next-state logic minimization
4. Implement the design

- FSM-design procedure

1. State diagram
2. state-transition table
3. State minimization
4. State encoding
5. Next-state logic minimization
6. Implement the design

Example: A vending machine

15 cents for a cup of coffee

- Doesn't take pennies or quarters

Doesn't provide any change

- FSM-design procedure

2. state-transition table
3. State minimization

4. State encoding
5. Next-state logic minimization
6. Implement the design

A vending machine: state diagram

A vending machine: State transition table

	present state	inputs		next state	output open	
	SO	0	0	S0	0	
		0	1	S1	0	
		1	0	S2	0	
		1	1	--	-	
	S1	0	0	S1	0	
		0	1	S3	0	
		1	0	S4	1	
		1	1	-	-	
	S2	0	0	S2	0	
		0	1	S5	1	
		1	0	S6	1	
		1	1	-	-	
	S3	0	0			
		0	1	S7	1	
		1	0	S8	1	
		1	1		-	
	S4	-	-	S4	1	
	S5	-	-	S5	1	
	S6	-	-	S6	1	
	S7	-	-	S7	1	
	S8	-	-	S8	1	
CSE370, Lecture						13

A vending machine: State minimization

A vending machine: State encoding

A vending machine: Logic minimization

$$
\begin{aligned}
& \mathrm{D} 1=\mathrm{Q} 1+\mathrm{D}+\mathrm{Q} 0 \mathrm{~N} \\
& \mathrm{D} 0=\mathrm{Q} 0^{\prime} \mathrm{N}+\mathrm{Q} 0 \mathrm{~N}^{\prime}+\mathrm{Q} 1 \mathrm{~N}+\mathrm{Q} 1 \mathrm{D} \\
& \mathrm{OPEN}=\mathrm{Q1} \mathrm{Q} 0
\end{aligned}
$$

A vending machine: Implementation

Generalized FSM model

- State variables (state vector) holds circuit state
- Stored in registers
- Combinational logic computes next state and outputs
- Next state is a function of current state and inputs
- Outputs are functions of
\boldsymbol{k} Current state (Moore machine)
\boldsymbol{K} Current state and inputs (Mealy machine)

