Overview

- Today
 - Finish up with Latches
 - State diagrams
 - Synchronous Vs Asynchronous Inputs

Latches versus flip-flops

The SR latch

Cross-coupled NOR gates

Can set (S=1, R=0) or reset (R=1, S=0) the output

Cross-coupled NAND gates

Can set (S=1, R=0) or reset (R=1, S=0) the output

SR latch behavior

Truth table and timing

SR latch is glitch sensitive

- Static 0 hazards can set/reset latch
 - Glitch on S input sets latch
 - Glitch on R input resets latch

Clear and preset in flip-flops

- Clear and Preset set flip-flop to a known state
 Used at startup, reset
- Clear or Reset to a logic 0
 - Synchronous: Q=0 when next clock edge arrives
 - Asynchronous: Q=0 when reset is asserted
 Doesn't wait for clock
 Quick but dangerous
- Preset or Set the state to logic 1
 - Synchronous: Q=1 when next clock edge arrives
 - Asynchronous: Q=1 when reset is asserted
 - ✓ Doesn't wait for clock
 - ✔ Quick but dangerous

State diagrams

How do we characterize logic circuits?

- Combinational circuits: Truth tables
- Sequential circuits: State diagrams
- First draw the states
 - States = Unique circuit configurations
- Second draw the transitions between states
 - Transitions = Changes in state caused by inputs

Example: SR latch

Begin by drawing the states

- States = Unique circuit configurations
- Possible values for feedback (Q, Q')

Example: SR latch

Observed SR latch behavior

♦ The 1−1 state is transitory

- Either R or S "gets ahead"
- Latch settles to 0–1 or 1–0 state ambiguously
- Race condition → non-deterministic transition
 ∠ Disallow (R,S) = (1,1)

System considerations

Use edge-triggered flip-flops wherever possible

Avoid latches

Basic rules for correct timing

- Clock flip-flops synchronously (all at the same time)
 No flip-flop changes state more than once per clock cycle
 FF propagation delay > hold time
- Avoid mixing positive-edge triggered and negative-edge triggered flip-flops in the same circuit

Asynchronous inputs

- Clocked circuits are synchronous
 - Circuit changes state only at clock edges
 - Signals (voltages) settle in-between clock edges
- Unclocked circuits or signals are asynchronous
 - No master clock
 - Real-world inputs (e.g. a keypress) are asynchronous
- Synchronous circuits have asynchronous inputs
 - Reset signal, memory wait, user input, etc.
 - Inputs "bounce"
 - Inputs can change at any time
 We must synchronize the input to our clock
 - ✓ Inputs will violate flip-flop setup/hold times