
Intro to Digital Logic, Lab 5 

Sequential Logic 

 

Lab Objectives 

Now that we have mastered combinational logic, it is time to figure out sequential circuits.  

In this lab you will download a premade design to your board.  Then, you get to design your 

own circuit and get it working. 

Assigned Task – Mapping sequential logic to the FPGA 

To understand the sequential logic design, simulation, and execution process we’ll use a 

simple state machine that has one input w and one output out.  The output is true whenever w 

has been true for the previous two clock cycles.  The Verilog for the machine is given here: 

module simple (clk, reset, w, out);  

 input      clk, reset, w;  

 output reg out;  

 

 reg [1:0] ps;  // Present State  

 reg [1:0] ns;  // Next State  

  

 // State encoding.  

 parameter [1:0] A = 2'b00, B = 2'b01, C = 2'b10;  

  

 // Next State logic  

 always @(*)  

  case (ps)  

   A: if (w) ns = B;  

    else  ns = A;  

   B: if (w) ns = C;  

    else  ns = A;  

   C: if (w) ns = C;  

    else  ns = A;  

   default:  ns = 2'bxx;  

  endcase  

   

 // Output logic - could also be another always, or part of above block.  

 assign out = (ps == C);  

  

 // DFFs  

 always @(posedge clk)  

  if (reset)  

   ps <= A;  

  else  

   ps <= ns;  

     

endmodule  

 

To simulate this logic, we not only have to provide the inputs, but must also specify the 

clock.  For that, we can embed some simple logic in the testbench.  Here is the testbench for 

this FSM: 



module simple_testbench();  

 reg      clk, reset, w;  

 wire     out;  

  

 simple dut (clk, reset, w, out);  

   

 // Set up the clock.  

 parameter CLOCK_PERIOD=100;  

 initial clk=1;  

 always begin  

  #(CLOCK_PERIOD/2);  

  clk = ~clk;  

 end  

   

 // Set up the inputs to the design.  Each line is a clock cycle.  

 initial begin  

                      @(posedge clk);  

  reset <= 1;         @(posedge clk);  

  reset <= 0; w <= 0; @(posedge clk);  

                      @(posedge clk);  

                      @(posedge clk);  

                      @(posedge clk);  

              w <= 1; @(posedge clk);  

              w <= 0; @(posedge clk);  

              w <= 1; @(posedge clk);  

                      @(posedge clk);  

                      @(posedge clk);  

                      @(posedge clk);  

              w <= 0; @(posedge clk);  

                      @(posedge clk);  

  $stop; // End the simulation.  

 end  

endmodule   

 

Note that in this testbench, instead of waiting for a specific amount of time with “#10;”, we 

wait for a clock edge with “@(posedge clk)”.  In this way we wait for a clock edge to occur 

(and thus the FSM moves to the next state) before applying new inputs.  Note that embedding 

@(posedge clk) inside initial blocks is fine for testbenches, but should not be part of code 

intended to be actually mapped into the FPGA. 

Simulate the design with ModelSim, and make sure it works. 

ModelSim Tip: Since clocks are so important to FSMs, it can be useful to set the 

grey gridlines in the wave display to line up with the positive edge of the clocks.  

Look in the lower-left corner of the waveform window, and click the “Edit Grid & 

Timeline Properties…” icon: 



 

If you set the “Grid Period” to 100ps, which is the clock period, the grid lines will 

now line up with the clock.  Make sure to save the formatting to the simple_wave.do 

file. 

Next, set up the design to run on the FPGA.  For this we need to provide a clock to the 

circuit, but the clocks on the chip are VERY fast (50MHz, so a clock every 40ns!).  For our 

purposes we’d like a slower clock, so we provide a clock divider – a circuit that generates 

slower clocks from a master clock.  Below is a version of the DE1_SoC main file that 

includes the clock divider, and hooks the simple FSM properly to run on the board.  In the 

code below we select which clock via the “whichClock”.  whichClock = 25 yields a clock 

with a cycle time of a bit over a second, 24 is twice as fast, 26 is twice as slow, etc. 



module DE1_SoC (CLOCK_50, HEX0, HEX1, HEX2, HEX3, HEX4, HEX5, KEY, LEDR, 

SW);   

 input             CLOCK_50; // 50MHz clock.  

 output   [6:0]    HEX0, HEX1, HEX2, HEX3, HEX4, HEX5;    

 output   [9:0]    LEDR;    

 input    [3:0]    KEY;      // True when not pressed, False when 

pressed  

 input    [9:0]  SW;     

  

 // Generate clk off of CLOCK_50, whichClock picks rate.  

 wire [31:0] clk;  

 parameter whichClock = 25;  

 clock_divider cdiv (CLOCK_50, clk);   

   

 // Hook up FSM inputs and outputs.  

 wire reset, w, out;  

 assign reset = ~KEY[0];     // Reset when KEY[0] is pressed.  

 assign w = ~KEY[1];  

   

 simple s (.clk(clk[whichClock]), .reset, .w, .out);  

  

 // Show signals on LEDRs so we can see what is happening.  

 assign LEDR = { clk[whichClock], 1'b0, reset, 2'b0, out};   

   

endmodule   

  

// divided_clocks[0] = 25MHz, [1] = 12.5Mhz, ... [23] = 3Hz, [24] = 1.5Hz, 

[25] = 0.75Hz, ...  

module clock_divider (clock, divided_clocks);  

 input clock;  

 output [31:0] divided_clocks;  

 reg [31:0] divided_clocks;  

   

 initial  

  divided_clocks = 0;  

    

 always @(posedge clock)  

  divided_clocks = divided_clocks + 1;  

endmodule   

 

Add this to your project, compile the design for the FPGA, and test it on the DE1 board.  

This design uses KEY0 for reset (press to reset the circuit), KEY1 as the “w” input, LEDR5 

shows the clock, LEDR3 shows the reset, and LEDR0 shows the output of the FSM. 

You do not have to demonstrate this circuit working to the TA, but running this test will help 

a LOT in getting the design problem working. 

Design Problem – Hazard lights 

Review the Verilog Tutorial on the website through to the end. 

Note: ALL FSMs in this class need to be structured similar to the “simple” code above – next 

state and output logic in either “always @(*)” or “assign” statements, each using the “=” 

to assign values to signals, and stateholding elements created in an “always @(posedge 

clk)” block with assignments using “<=”.  This holds for labs 5 – 8. 



The landing lights at Sea-Tac are busted, so we have to come up with a new set.  In order to 

show pilots the wind direction across the runways we will build special wind indicators to 

put at the ends of all runways at Sea-Tac. 

Your circuit will be given two inputs (SW[0] and SW[1]), which indicates wind direction, 

and three lights to display the corresponding sequence of lights: 

SW[1] SW[0] Meaning Pattern 

(LEDR[2:0]) 

0 0 Calm 1 0 1 

0 1 0 

0 1 Right to Left 0 0 1 

0 1 0 

1 0 0 

1 0 Left to Right 1 0 0 

0 1 0 

0 0 1 

For each situation, the lights should cycle through the given pattern.  Thus, if the wind is 

calm, the lights will cycle between the outside lights lit, and the center light lit, over and 

over.  In a calm wind the lights cycle through two patterns, with the outer lights lit, then the 

center, then repeating.  The right to left and left to right crosswind indicators repeatedly cycle 

through three patterns each, which has the light “move” from right to left or left to right 

respectively. 

The switches will never both be true.  The switches may be changed at any point during the 

current cycling of the lights, and the lights must switch over to the new pattern as soon as 

possible (however, it can enter into any point in the other pattern’s behaviors). 

Your design should be in the style of the “simple” module given above.  That is, you can use 

“if” and “case” statements to implement the next-state logic and the outputs. 

You will be graded 100 points on correctness, style, testing, testbenches, etc.  Your bonus 

goal is developing the smallest circuit possible, in terms of # of FPGA logic and DFF 

resources.  We need to compute the size without the cost of the clock_divider.  To do this, 

perform a compilation of your design, and look at the Compilation Report.  In the lefthand 

column select Analysis & Synthesis > Resource Utilization by Entity.  The “LC 

Combinationals” column lists the amount of FPGA logic elements being used, which are 

logic elements that can compute any Boolean combinational function of at most 6 inputs.  

The “LC Registers” is the number of DFFs used.  For each entry there is the listing of the 

amount of resources used by that specific module (the number in parentheses), and the 

amount of resources used by that specific module plus its submodules (the number outside 

the parentheses). 



 

To compute the size of your FSM, add the numbers outside the parentheses for the entire 

design under “LC Combinationals” and “LC Registers”.  Subtract from that the same 

numbers from the “clock_divider” line.  The original “simple” FSM from the first part of this 

lab has a score of (28+28)-(26+26) = 4, though obviously it doesn’t perform the right 

functions for the runway lights… 

Lab Demonstration/Turn-In Requirements 

A TA needs to "Check You Off" for each of the tasks listed below. 

 Demonstrate your runway lights circuit working in simulation. 

 Demonstrate your runway lights circuit working on the DE1 board. 

 Turn in a printout of the Verilog for your runway lights design, including the testbench. 

 Turn in a printout of the “Resource Utilization by Entity” page.  Write on this the 

computed size for your design. 

 Tell the TA how many hours (estimated) it took to complete this lab, including reading, 

planning, design, coding, debugging, testing, etc.  Everything related to the lab (in total). 


