
CSE352 Autumn 2013 Homework #7

Instructor: Mark Oskin
TAs: Vincent Lee, Mark Wyse

Due In Class 12/6/2013
Version 1.3

Please write your name and student ID at the top right corner of each page, and
staple or paperclip your work together. We are NOT responsible for losing papers
that were not stapled or paperclipped together.

Complete the following questions. Please write legibly and try to draw clean
diagrams. Spaghetti wiring in circuit diagrams is difficult to grade. We will not
grade work that is too heavily encrypted for us to read (i.e. we can’t read it, we
can’t grade it). Please consider typesetting your work if you think that it may not
be legible to the grader. You are encouraged to collaborate with your peers but you
must turn in your own work. Justice will be enforced if you are caught cheating.

Select and complete two problems that you find most interesting of the first three.
Each problem has several parts. Problems 4 and 5 are optional.

Problem 1 Branch Prediction

Suppose we use a TAKEN/NOT TAKEN scheme for our branch predictor. In this
implementation, we keep a lookup table that takes the lower 16 bits of the branch
instruction address and looks to see if the branch was TAKEN or NOT TAKEN the
last time this entry in the lookup table was accessed. For instance, if an instruction
at address 0x80001000 was TAKEN, the next time an instruction with address ending
in 0x1000 is seen, the predictor will predict TAKEN. If the prediction is correct, no
update occurs to the branch predictor’s lookup table.

If the prediction is incorrect, the lookup table will be updated with the correct
direction of the branch. For example, if the branch predictor predicted TAKEN for
an address ending in 0x1004 but the actual outcome is NOT TAKEN, then the entry
in the lookup table for 0x1004 will be updated to NOT TAKEN so that the next time
an address ending in 0x1004 is seen, the predictor will predict NOT TAKEN.

Assume that all entries in the lookup table are initialized to NOT TAKEN.

(a) For the following sequence of branch addresses, and branch outcomes, fill out the
corresponding branch predictions. The first few are done for you:



Problem 1 2

Address Prediction Outcome
0x1000004 NOT TAKEN TAKEN
0x2000004 TAKEN NOT TAKEN
0x2000032 NOT TAKEN TAKEN
0x200003C TAKEN
0x1000004 TAKEN
0x2000004 NOT TAKEN
0x2000032 NOT TAKEN
0x2000018 TAKEN
0x1000016 NOT TAKEN

(b) For the following programs, explain whether you expect this branch predictor to
perform well or to perform poorly. Justify your answer.

(i) int main() {

int LOL = 0;

for (int i = 0; i < 1000; i++)

LOL++;

}

}

(ii) int meow(int mix) {

if (mix % 2 == 1)

return mix + 1;

else

return mix - 1;

}

int main() {

int temp = 0;

temp = meow(temp);

temp = meow(temp);

temp = meow(temp);

temp = meow(temp);

}

(iii) int meow(int mix) {

if (mix % 2 == 1)

return mix + 1;

else

return mix - 1;

}

int main() {

int j = 0;

do {

meow(j);

j++;

CSE352 PS #7



Problem 2 3

} while (j < 10)

}

(c) For what sequence of branch patterns and outcomes does this branch predictor
fail spectacularly (> 90% mispredict rate)?

(d) Suppose we augment our branch predictor and use a STRONGLY TAKEN,
WEAKLY TAKEN, WEAKLY NOT TAKEN, STRONGLY NOT TAKEN scheme.
In this scheme, we initialize the lookup table to WEAKLY NOT TAKEN. If
a lookup value is either STRONGLY TAKEN or WEAKLY TAKEN, then the
branch predictor predicts TAKEN, otherwise the predictor predicts NOT TAKEN.

The following FSM describes how the predictor for a given lookup entry is up-
dated:

The value P is the value of the prediction for this entry, while B is the outcome
of a branch.

For the following sequence of branch addresses, fill out the following table for this
new branch predictor:

Address Old Predictor New Predictor Outcome
0x10000004 WEAKLY NOT TAKEN WEAKLY TAKEN TAKEN
0x10010004 WEAKLY TAKEN STRONGLY TAKEN TAKEN
0x10020008 NOT TAKEN
0x10120004 TAKEN
0x10000004 UNTAKEN
0x10000004 TAKEN
0x10000016 TAKEN
0x10010004 TAKEN
0x10000004 UNTAKEN
0x10300004 TAKEN

(e) Now write a simple C program that when run on the new branch predictor
achieves at least a 10% prediction accuracy improvement over the original pre-
dictor in part A.

CSE352 PS #7



Problem 2 4

Problem 2 Framebuffers and Simple Graphics Accelerators

In this problem we will explore the concepts behind how images are created and read
in hardware. A commonly used technique to handle graphics is to use allocate a
frame buffer in memory and designate that region as the memory that the display
hardware should read out of to get the display data via direct memory access. In this
design, the display hardware operates in parallel with the CPU starting at the base
address of the framebuffer to the end of the image and repeats. Assume throughout
this problem that the main memory has a sufficient number of read and write ports
to handle all the memory requests and services them appropriately.

Simple Display Architecture

(a) Recall that an RGB image composes of 24 bit pixels, 8 bits per color channel.
For simplicity, in this problem we will assume that an RGB image takes 32 bit so
that they are word aligned and just zero pad the upper 8 bits such that the bit
fields are {8’b0, red[7:0], green[7:0], blue[7:0]}. With this encoding, for an 800 x
600 RGB image, how many bytes are required to represent this image? Notice
this is also the amount of memory required to store one frame of this image.

(b) Now suppose we allocate enough memory for one frame starting at address
0x00100000 in main memory which we will write pixel values to. This newly
allocated region is called a framebuffer and 0x00100000 is the base address of the
frame. One way we can create and image on the display is to run software on
the CPU and write pixel values to the framebuffer for each pixel. Using volatile
variables where appropriate, write a short C program that would fill the entire
framebuffer with the color red (0x00FF0000).

(c) Suppose we are running on a 3 GHz processor; if our frame filling operation
with red takes about 10 cycles to write each pixel, what percentage of every
second is spent writing to the framebuffer if we try to achieve a 30 Hz framerate
target? What if you were running a more complicated image and it required 100
instructions to compute each pixel value? What if we also increased the target
framerate target to 60 Hz?

CSE352 PS #7



Problem 3 5

(d) The above solution is agonizingly slow and the computation ties up the CPU
which could be doing other important things like running Starcraft II or loading
your Facebook page. To make graphics rendering tractable we use accelerators or
dedicated graphic processing units (GPUs) to offload the computation. Suppose
we modify the architecture so that we have a frame filler accelerator as follows:

Display Architecture with Frame Filler Accelerator

Suppose we have the following memory mapped register locations that implement
a ready valid interface with the accelerator:

Address Value Description
0xF0000000 Color The color to fill the frame with (Write Only)
0xF0000004 Ready The ready status of the frame filler. (Read Only)
0xF0000008 Valid The valid status. Write 1 to this register to fire off the accelerator

Using volatile variables where appropriate, write C code that will fill the frame
with red using this accelerator and interface. Notice that this solution drastically
reduces the number of instructions run on the CPU to write the image.

Problem 3 Cache Side Channel Attacks

A hardware side channel attack is a method of compromising sensitive information
about the target system such as what processes may be running or exposing RSA
keys by exploiting aspects of the hardware architecture such as the cache or branch
predictor. In this question we will explore the concept of a side channel attack
targeting the cache, which is a central component to all commodity processors.

Assume for simplicity that our cache has only an L1 cache and is an 8 KB direct
mapped, writeback, allocate, cache with 8 words per line, and 32 bits per word.

CSE352 PS #7



Problem 3 6

(a) Suppose the current state of each cache line is invalid (cold cache). How many
memory accesses are necessary in order to fill the cache with all valid lines?

(b) For the following sequence of memory accesses, indicate whether the memory
access was a hit or a miss. Assume the cache is initially cold.

Address Hit?
0x00000000
0x00000004
0x00000020
0x00000040
0x00000080
0x0000003C

(c) Suppose a cache hit for our processor is one cycle, while a cache miss takes 50
cycles to refill the cache with the correct data. If the cache cycle time is 5 ns,
what is the average memory access time (AMAT) for the memory access pattern
in the previous part of the problem?

(d) Now suppose we have the following malicious code running on a thread of our
machine. In terms of cache behavior, what does the following code do? Assume
that the garbage array is allocated a contiguous piece of memory.

int64_t garbage[1024];

int64_t read;

while (true) {

for (int i = 0; i < 1024; i++) {

read = garbage[i];

}

}

(e) Now suppose the malicious code has been modified to execute the following code.
The function time() returns the processor time in picoseconds which you may
assume is a 64 bit number. You may assume the amount of time to process this
call is negligible.

int64_t garbage[1024];

int64_t read;

int64_t time;

while (true) {

for (int i = 0; i < 1024; i+=4) {

time = time();

read = garbage[i];

time = time - time();

CSE352 PS #7



Problem 5 7

garbage[i] = time;

}

analyze(garbage);

}

Now what does the above code do? What is now stored in the array garbage?

(f) Now suppose there is another thread which we will refer to as the victim thread
that is running on the same core and multiplexes time on the same processor.
What does the malicious code now store in the garbage array? How can this
information be used to analyze what is running on the victim thread? Your
explanation should include a discussion of the cache behavior.

(g) Suppose our malicious thread recorded the following memory access pattern; what
kind of program can you speculate is running on the victim thread? Notice that
this data mining and speculation is possible as a consequence of how memory
hierarchies (and therefore caches) are implemented in hardware.

0x00000400

0x00000200

0x00000300

0x00000380

0x00000340

0x00000360

0x00000360

0x00000360

Problem 4 (Optional) Tournament Predictor

The Tournament Predictor was a branch prediction module that was first used on the
Alpha 21264 processor. At a high level, succinctly explain how this branch predictor
shown in Figure 2 works. Don’t just copy what they say in the paper; paraphrase the
important aspects of the design.

A description and block diagram of the predictor can be found at:
http://www.cis.upenn.edu/ milom/cis501-Fall05/papers/Alpha21264.pdf

Problem 5 True/False/I Don’t Care

[True/False/I Don’t Care] This is the last question on the last problem set of this
quarter.

CSE352 PS #7



Problem 5 8

This page left intentionally blank. WAT?

CSE352 PS #7


