
 University of Washington – Computer Science & Engineering
Winter 2021 Instructor: Mark Wyse Due: January 29, 2021

1

CSE 351 Study Guide 1 – Task 3

Last Name:

First Name:

UW NetID (username):

Academic Integrity Statement:
All work on these questions is my own. I had no prior

knowledge of the questions, and I will not share or discuss my

answers with anyone else. Violation of these terms may result

in a failing grade. (please sign)

Instructions

• Fill in your name and UW NetID in the table above, then read the Academic Integrity Statement

and sign your name in the box to the right of it indicating that you understand and will comply

with the statement.

• Show scratch work for partial credit but answer in the blanks, boxes, or spaces provided.

• You may use your study guide from Task 1, course lecture slides and Ed Lessons, and course

textbooks while completing this task.

• Use of reference materials external to those listed above is not allowed (e.g., Stack Overflow,

web searches, etc.)

• These questions should take approximately 30 minutes to answer.

• Refer to the Study Guides webpage for additional information:

https://courses.cs.washington.edu/courses/cse351/21wi/guides/

Advice

• Read each question carefully.

• Relax and breathe; you are here to learn.

https://courses.cs.washington.edu/courses/cse351/21wi/guides/

2

Part 1. Number Representation, Integers, Floating Point
(A) Assume that we are using w-bits to represent both two’s complement and unsigned integers. Write the

formulas to compute TMin, TMax, UMin, and UMax in the table below.

TMin TMax UMin UMax

(B) In C, it is safe (there is no possibility of losing data) when casting from type int (4-byte integer) to

type float (4-byte IEEE floating point). Circle your answer. No explanation required.

 True / False

(C) The IEEE floating point standard allows any real number to be represented with both high precision

and high accuracy. Circle your answer. No explanation required.

 True / False

(D) Converting from type int to type float changes the stored bits. Circle your answer. No explanation

required.

 True / False

(E) Consider the table below where each row contains two 8-bit integral constants that will be compared

using the <, >, or == comparison. Determine which comparison makes the expression: Left Constant

(<, >, ==) Right Constant evaluate to True. Also state the type of comparison that is performed

(signed or unsigned) assuming we use the same type promotion and casting rules as C does.

Left Constant Order (<, >, ==) Right Constant Comparison Type

1 > 0 signed

(int) 15U 15

(unsigned) -1 -2

(unsigned) -128 127

127 (int) 128U

(F) In one or two sentences, explain why floating-point operations do not work like real mathematics?

3

(G) In one or two sentences, explain the benefits of the Two’s Complement integer representation

compared to the Sign and Magnitude representation.

This space intentionally left blank.

4

Part 2. Memory, Data, and Addressing
(A) Assume we are executing code on a machine with a word size of w bits, and each addressable

memory location stores b bytes. What is the total size of the addressable memory on this machine?

(B) A piece of data can be fetched from memory as long as we have its address. Circle your answer. No

explanation required.

 True / False

(C) Assume that a chunk of memory is located at address A and has size S. Write an equality comparison

that evaluates to True when the memory chunk is aligned.

(D) How many bytes of memory does the following line of C code require on a 64-bit x86-64

architecture?

char *s = “I love CSE 351!”;

This space intentionally left blank.

5

(E) For this problem, assume we are executing on a 64-bit x86-64 machine (little endian) and that the

initial contents of memory are shown below. The sizes of various C types are also listed below. Write

the type and hexadecimal value for each expression in the table below, assuming these statements

are evaluated after block of code listed below is executed. Write UNKNOWN if the value cannot be

determined. Make sure to specify all bits for the result of each expression (i.e., use the correct number

of bits as determined by the expression’s resulting type).

char *c = 0x00;
short *s = (short*)(c + 32);
int *x = 0x10;
for (int i = 0; i < 3; i++) {
 x[i] = i*2;
}
long *y = (long*)(x + 4);
((int)(c+10)) = 0xFF00FF00;

Expression (in C) Type Value (hexadecimal)

c char* 0x 0000 0000 0000 0000

y

*(c+5)

&y

x[-1]

(((short)x[2]) + 10)

(short*)(((long*) &s[0]) - 2)

Memory

Address
+0 +1 +2 +3 +4 +5 +6 +7

0x00 30 31 32 33 34 35 36 00

0x08 FF 00 FF 00 AA BB CC DD

0x10 AB CD EF 00 01 02 03 04

0x18 01 23 45 67 89 AB CD EF

0x20 BE EF BE EF BA DD BA DD

0x28 11 22 33 44 55 66 77 88

Type Size (in bytes)

char 1

short 2

int 4

long 8

