Floating Point
CSE 351 Spring 2017

Instructor:
Ruth Anderson

Teaching Assistants:
Dylan Johnson
Kevin Bi
Linxing Preston Jiang
Cody Ohlsen
Yufang Sun
Joshua Curtis
Administrivia

- Lab 1 due next Friday (4/14)
 - Prelim submission (3+ of `bits.c`) due on Monday (4/10)
 - Bonus slides at the end of today’s lecture have relevant examples
- HW2 coming soon!
Unsigned Multiplication in C

Operands:
\[w \text{ bits} \]

True Product:
\[2w \text{ bits} \]

Discard \(w \) bits:
\[w \text{ bits} \]

- Standard Multiplication Function
 - Ignores high order \(w \) bits
- Implements Modular Arithmetic
 - \(\text{UMult}_w(u, v) = u \cdot v \mod 2^w \)
Multiplication with shift and add

- Operation $u \ll k$ gives $u \times 2^k$
 - Both signed and unsigned

<table>
<thead>
<tr>
<th>Operands: w bits</th>
<th>$u \times 2^k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>$0 \ldots 010 \ldots 00$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>True Product: $w + k$ bits</th>
<th>$u \times 2^k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u \times 2^k$</td>
<td>$0 \ldots 010 \ldots 00$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discard k bits: w bits</th>
<th>$u \times 2^k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u \times 2^k$</td>
<td>$0 \ldots 010 \ldots 00$</td>
</tr>
</tbody>
</table>

- **Examples:**
 - $u \ll 3 \quad =\quad u \times 8$
 - $u \ll 5 \ - \ u \ll 3 \quad =\quad u \times 24$

- Most machines shift and add faster than multiply
 - *Compiler generates this code automatically*
Number Representation Revisited

- What can we represent so far?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses

- How do we encode the following:
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10^{23})
 - Very small numbers (e.g. 6.626×10^{-34})
 - Special numbers (e.g. ∞, NaN)

Floating Point
Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

There are many more details that we won’t cover
 - It’s a 58-page standard...
Floating Point Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some “simple fractions” have no exact representation (e.g., 0.2)
 - Can also lose precision, unlike ints
 - “Every operation gets a slightly wrong result”

- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results

- Never test floating point values for equality!
- Careful when converting between ints and floats!
Representation of Fractions

- “Binary Point,” like decimal point, signifies boundary between integer and fractional parts:

 Example 6-bit representation:

 \[
 \begin{array}{c}
 2^1 \\
 2^0 \\
 2^{-1} \\
 2^{-2} \\
 2^{-3} \\
 2^{-4}
 \end{array}
 \]

- **Example:** \(10.1010_2 = 1\times2^1 + 1\times2^{-1} + 1\times2^{-3} = 2.625_{10}\)

- Binary point numbers that match the 6-bit format above range from 0 (00.0000_2) to 3.9375 (11.1111_2)
Fractional Binary Numbers

- Representation
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: \[\sum_{k=-j}^{i} b_k \cdot 2^k \]
Fractional Binary Numbers

- **Value**
 - 5 and 3/4
 - 2 and 7/8
 - 47/64

- **Representation**
 - 101.11₂
 - 10.111₂
 - 0.101111₂

- **Observations**
 - Shift left = multiply by power of 2
 - Shift right = divide by power of 2
 - Numbers of the form 0.111111...₂ are just below 1.0
 - 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... \(\Rightarrow\) 1.0
 - Use notation 1.0 – \(\varepsilon\)
Limits of Representation

- Limitations:
 - Even given an arbitrary number of bits, can only exactly represent numbers of the form $x \times 2^y$ (y can be negative)
 - Other rational numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary Representation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/3 = 0.333333..._{10}$</td>
<td>$0.01010101[01]..._2$</td>
</tr>
<tr>
<td>$1/5 = 0.001100110011[0011]..._2$</td>
<td></td>
</tr>
<tr>
<td>$1/10 = 0.0001100110011[0011]..._2$</td>
<td></td>
</tr>
</tbody>
</table>
Fixed Point Representation

- Implied binary point. Two example schemes:

 #1: the binary point is between bits 2 and 3
 \[b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ [. \] \ b_2 \ b_1 \ b_0 \]

 #2: the binary point is between bits 4 and 5
 \[b_7 \ b_6 \ b_5 \ [. \] \ b_4 \ b_3 \ b_2 \ b_1 \ b_0 \]

- Wherever we put the binary point, with fixed point representations there is a trade off between the amount of range and precision we have

- Fixed point = fixed range and fixed precision

 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers

- Hard to pick how much you need of each!
Floating Point Representation

- Analogous to scientific notation
 - In Decimal:
 - Not 12000000, but 1.2×10^7 In C: 1.2e7
 - Not 0.0000012, but 1.2×10^{-6} In C: 1.2e-6
 - In Binary:
 - Not 11000.000, but 1.1×2^4
 - Not 0.000101, but 1.01×2^{-4}
- We have to divvy up the bits we have (e.g., 32) among:
 - the sign (1 bit)
 - the significand
 - the exponent
Scientific Notation Translation

- Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: \(1.011_2 \times 2^4 = 10110_2 = 22_{10}\)
 - Example: \(1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}\)

- Convert from binary point to normalized scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - Example: \(1101.001_2 = 1.101001_2 \times 2^3\)

- **Practice:** Convert \(11.375_{10}\) to binary scientific notation

- **Practice:** Convert \(1/5\) to binary
Floating Point Topics

- Fractional binary numbers
- **IEEE floating-point standard**
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
IEEE Floating Point

- IEEE 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs portable
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs

- Driven by numerical concerns
 - Scientists/numerical analysts want them to be as real as possible
 - Engineers want them to be easy to implement and fast
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops
Floating Point Representation

- Numerical form:

\[V_{10} = (-1)^s \times M \times 2^E \]

- Sign bit \(s \) determines whether number is negative or positive
- Significand (mantissa) \(M \) normally a fractional value in range \([1.0,2.0)\)
- Exponent \(E \) weights value by a (possibly negative) power of two
Floating Point Representation

- Numerical form:
 \[V_{10} = (-1)^s \times M \times 2^E \]
 - Sign bit \(s \) determines whether number is negative or positive
 - Significand (mantissa) \(M \) normally a fractional value in range \([1.0, 2.0)\)
 - Exponent \(E \) weights value by a (possibly negative) power of two

- Representation in memory:
 - MSB \(s \) is sign bit \(s \)
 - \(\text{exp} \) field encodes \(E \) (but is \textit{not equal} to \(E \))
 - \(\text{frac} \) field encodes \(M \) (but is \textit{not equal} to \(M \))
Precisions

- **Single precision:** 32 bits

 1 bit | 8 bits | 23 bits

- **Double precision:** 64 bits

 1 bit | 11 bits | 52 bits

- **Finite representation means not all values can be represented exactly. Some will be approximated.**
Normalization and Special Values

\[V = (-1)^s \cdot M \cdot 2^E \]

- "Normalized" = \(M \) has the form 1.xxxxx
 - As in scientific notation, but in binary
 - 0.011 \(\times 2^5 \) and 1.1 \(\times 2^3 \) represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it

- How do we represent 0.0? Or special or undefined values like 1.0/0.0?
Normalizes and Special Values

\[V = (-1)^{S} \times M \times 2^{E} \]

- "Normalized" = \(M \) has the form 1.xxxxx
 - As in scientific notation, but in binary
 - 0.011 x 2^5 and 1.1 x 2^3 represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it.

- Special values:
 - \textbf{zero}:
 \[\text{exp} = 00\ldots0 \quad \text{frac} = 00\ldots0\]
 - \(+\infty, -\infty\):
 \[\text{exp} = 11\ldots1 \quad \text{frac} = 00\ldots0\]
 \[1.0/0.0 = -1.0/-0.0 = +\infty, \quad 1.0/-0.0 = -1.0/0.0 = -\infty\]
 - \textbf{NaN} ("Not a Number"): \(\text{exp} = 11\ldots1 \quad \text{frac} \neq 00\ldots0\)
 Results from operations with undefined result: \(\sqrt{-1}, \infty - \infty, \infty \times 0\), etc.
 - \textbf{Note}: \(\text{exp}=11\ldots1\) and \(\text{exp}=00\ldots0\) are reserved, limiting \text{exp} range...
Normalized Values

\[V = (-1)^S \times M \times 2^E \]

- **Condition:** \(\exp \neq 000\ldots0 \) and \(\exp \neq 111\ldots1 \)
- **Exponent coded as biased value:** \(E = \exp - \text{Bias} \)
 - \(\exp \) is an unsigned value ranging from 1 to \(2^{k-2} \) (\(k \) == # bits in \(\exp \))
 - \(\text{Bias} = 2^{k-1} - 1 \)
 - Single precision: 127 (so \(\exp \): 1...254, \(E \): -126...127)
 - Double precision: 1023 (so \(\exp \): 1...2046, \(E \): -1022...1023)
 - These enable negative values for \(E \), for representing very small values
- **Significand coded with implied leading 1:** \(M = 1.\ldots x \)
 - \(\ldots x \): the \(n \) bits of \(\text{frac} \)
 - Minimum when \(000\ldots0 \) (\(M = 1.0 \))
 - Maximum when \(111\ldots1 \) (\(M = 2.0 - \varepsilon \))
 - Get extra leading bit for “free”
Normalized Encoding Example

\[V = (-1)^S \times M \times 2^E \]

網路:

- **Value:** `float f = 12345.0;`
 - `12345_{10} = 11000000111001_{2}`
 - `= 1.1000000111001_{2} \times 2^{13} \text{ (normalized form)}`

- **Significand:**
 - `M = \underline{1.1000000111001}_{2}`
 - `\text{frac} = \underline{1000000111001000000000000}_{2}`

- **Exponent:** `E = \text{exp} - \text{Bias}, \text{ so exp} = E + \text{Bias}`
 - `E = 13`
 - `Bias = 127`
 - `\text{exp} = 140 = \underline{10001100}_{2}`

- **Result:**
 - `\begin{array}{c|c|c}
 s & \text{exp} & \text{frac} \\
 \hline
 0 & \underline{10001100} & \underline{1000000011100100000000000}_{2}
 \end{array}`
Question

What is the correct value encoded by the following floating point number?

A. $+0.75$
B. $+1.5$
C. $+2.75$
D. $+3.5$
Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- **Floating-point operations** and rounding
- Floating-point in C

There are many more details that we won’t cover
 - It’s a 58-page standard...
Floating Point Operations

- Unlike the representation for integers, the representation for floating-point numbers is **not exact**
Floating Point Operations: Basic Idea

\[V = (-1)^S \times M \times 2^E \]

- \[x +_f y = \text{Round}(x + y) \]
- \[x \times_f y = \text{Round}(x \times y) \]

- Basic idea for floating point operations:
 - First, compute the exact result
 - Then, round the result to make it fit into desired precision:
 - Possibly overflow if exponent too large
 - Possibly drop least-significant bits of significand to fit into \(\text{frac} \)
Floating Point Addition

\[(–1)^s_1 M_1 \ 2^{E_1} \ + \ (–1)^s_2 M_2 \ 2^{E_2}\]

Assume \(E_1 > E_2\)

- **Exact Result:** \((–1)^s M \ 2^E\)
 - Sign \(s\), significand \(M\):
 - Result of signed align & add
 - Exponent \(E\): \(E_1\)

- **Fixing**
 - If \(M \geq 2\), shift \(M\) right, increment \(E\)
 - if \(M < 1\), shift \(M\) left \(k\) positions, decrement \(E\) by \(k\)
 - Overflow if \(E\) out of range
 - Round \(M\) to fit \(\text{frac}\) precision

Line up the binary points
Floating Point Multiplication

\[(-1)^{s_1} M_1 \ 2^{E_1} \ * \ (-1)^{s_2} M_2 \ 2^{E_2} \]

- **Exact Result:** \((-1)^{s} M \ 2^{E}\)
 - Sign \(s\): \(s_1 \ ^{\land} \ s_2\)
 - Significand \(M\): \(M_1 \ * \ M_2\)
 - Exponent \(E\): \(E_1 + E_2\)

- **Fixing**
 - If \(M \geq 2\), shift \(M\) right, increment \(E\)
 - If \(E\) out of range, overflow
 - Round \(M\) to fit \textit{frac} precision
Mathematical Properties of FP Operations

- Exponent overflow yields $\pm\infty$
- Floats with value $\pm\infty$, $-\infty$, and NaN can be used in operations
 - Result usually still $\pm\infty$, $-\infty$, or NaN; but not always intuitive
- Floating point operations do not work like real math, due to rounding!!
 - Not associative: $(3.14+1e100)-1e100 \neq 3.14+(1e100-1e100)$
 - 0
 - 3.14
 - Not distributive: $100\times(0.1+0.2) \neq 100\times0.1+100\times0.2$
 - 30.000000000000003553
 - 30
 - Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing
Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

There are many more details that we won’t cover
 - It’s a 58-page standard...
Floating Point in C

- C offers two (well, 3) levels of precision:
 - `float` 1.0f single precision (32-bit)
 - `double` 1.0 double precision (64-bit)
 - `long double` 1.0L (“double double” or quadruple) precision (64-128 bits)

- `#include <math.h>` to get `INFINITY` and `NAN` constants

- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!

- Instead use `abs(f1 – f2) < 2^{-20}` or some other threshold
Floating Point Conversions in C

- **Casting between int, float, and double changes the bit representation**
 - **int → float**
 - May be rounded (not enough bits in mantissa: 23)
 - Overflow impossible
 - **int or float → double**
 - Exact conversion (all 32-bit ints representable; 52-bit frac)
 - **long → double**
 - Depends on word size (32-bit is exact, 64-bit may be rounded)
 - **double or float → int**
 - Truncates fractional part (rounded toward zero)
 - “Not defined” when out of range or NaN: generally sets to Tmin (even if the value is a very big positive)
Number Representation Really Matters

- **1991**: Patriot missile targeting error
 - clock skew due to conversion from integer to floating point
- **1996**: Ariane 5 rocket exploded ($1 billion)
 - overflow converting 64-bit floating point to 16-bit integer
- **2000**: Y2K problem
 - limited (decimal) representation: overflow, wrap-around
- **2038**: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to TMin in 2038
- **Other related bugs:**
 - 1982: Vancouver Stock Exchange 10% error in less than 2 years
 - 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
 - 1997: USS Yorktown “smart” warship stranded: divide by zero
 - 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
include <stdio.h>

int main(int argc, char* argv[]) {
 int a = 33554435;
 printf("a = %d
(float) a = %f
\n", a, (float) a);

 float f1 = 1.0;
 float f2 = 0.0;
 int i;
 for (i = 0; i < 10; i++)
 f2 += 1.0/10.0;

 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
 printf("f1 = %10.9f\n", f1);
 printf("f2 = %10.9f\n\n", f2);

 f1 = 1E30;
 f2 = 1E-30;
 float f3 = f1 + f2;
 printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");
 return 0;
}
Floating Point Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some “simple fractions” have no exact representation (e.g., 0.2)
 - Can also lose precision, unlike ints
 - “Every operation gets a slightly wrong result”

- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results

- Never test floating point values for equality!
- Careful when converting between ints and floats!
Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```c
int x = ...;
float f = ...;
double d = ...;
double d2 = ...;
```

Assume neither `d` nor `f` is NaN

- `x == (int)(float) x`
- `x == (int)(double) x`
- `f == (float)(double) f`
- `d == (double)(float) d`
- `f == -(f)`
- `2/3 == 2/3.0`
- `(d+d2) - d == d2`