Floating Point
CSE 351 Spring 2017

Instructor:
Ruth Anderson

Teaching Assistants:
Dylan Johnson
Kevin Bi
Linxing Preston Jiang
Cody Ohlsen
Yufang Sun
Joshua Curtis
Administrivia

- Lab 1 due next Friday (4/14)
 - Prelim submission (3+ of bits.c) due on Monday (4/10)
 - Bonus slides at the end of today’s lecture have relevant examples

- HW2 coming soon!
Unsigned Multiplication in C

Operands:
\[u \]
\[v \]
\[w \text{ bits} \]

True Product:
\[u \cdot v \]
\[2w \text{ bits} \]

Discard \[w \text{ bits}: \]
\[w \text{ bits} \]

- Standard Multiplication Function
 - Ignores high order \(w \) bits
- Implements Modular Arithmetic
 - \(\text{UMult}_w(u, v) = u \cdot v \mod 2^w \)
Multiplication with shift and add

- Operation $u<<k$ gives $u*2^k$
 - Both signed and unsigned

Examples:
- $u<<3 == u * 8$
- $u<<5 - u<<3 == u * 24$

- Most machines shift and add faster than multiply
 - *Compiler generates this code automatically*
Number Representation Revisited

- What can we represent so far?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses

- How do we encode the following:
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10^{23})
 - Very small numbers (e.g. 6.626×10^{-34})
 - Special numbers (e.g. \(\infty \), NaN)
Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

There are many more details that we won’t cover
 - It’s a 58-page standard...
Floating Point Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some “simple fractions” have no exact representation (e.g., 0.2)
 - Can also lose precision, unlike ints
 - “Every operation gets a slightly wrong result”

- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results

- Never test floating point values for equality!

- Careful when converting between ints and floats!
Representation of Fractions

- “Binary Point,” like decimal point, signifies boundary between integer and fractional parts:

 Example 6-bit representation:

 \[\text{xx} \cdot \text{yyyy} \]

 \[2^1 \]
 \[2^0 \]
 \[2^{-1} \]
 \[2^{-2} \]
 \[2^{-3} \]
 \[2^{-4} \]

- **Example:** \(10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10}\)

- Binary point numbers that match the 6-bit format above range from 0 (00.0000\(_2\)) to 3.9375 (11.1111\(_2\))
Fractional Binary Numbers

- **Representation**
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: $\sum_{k=-j}^{i} b_k \cdot 2^k$
Fractional Binary Numbers

- **Value**
 - 5 and 3/4
 - 2 and 7/8
 - 47/64

- **Representation**
 - 101.11\(_2\)
 - 10.111\(_2\)
 - 0.101111\(_2\)

- **Observations**
 - Shift left = multiply by power of 2
 - Shift right = divide by power of 2
 - Numbers of the form 0.11111...\(_2\) are just below 1.0
 - 1/2 + 1/4 + 1/8 + ... + 1/2\(^i\) + ... → 1.0
 - Use notation 1.0 − ε
Limits of Representation

- Limitations:
 - Even given an arbitrary number of bits, can only exactly represent numbers of the form \(x \cdot 2^y \) (y can be negative)
 - Other rational numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{3} = 0.33333..._{10}) = 0.01010101[01]..._2</td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{5} =) 0.2_{10} 0.001100110011[0011]..._2</td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{10} =) 0.0001100110011[0011]..._2</td>
<td></td>
</tr>
</tbody>
</table>
Fixed Point Representation

- Implied binary point. Two example schemes:
 #1: the binary point is between bits 2 and 3
 \[b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ [.] \ b_2 \ b_1 \ b_0 \]
 #2: the binary point is between bits 4 and 5
 \[b_7 \ b_6 \ b_5 \ [.] \ b_4 \ b_3 \ b_2 \ b_1 \ b_0 \]

- Wherever we put the binary point, with fixed point representations there is a trade off between the amount of range and precision we have

- Fixed point = fixed *range* and fixed *precision*
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers

- Hard to pick how much you need of each!
Floating Point Representation

- Analogous to scientific notation
 - In Decimal:
 - Not 12000000, but 1.2×10^7 \hspace{1cm} In C: 1.2e7
 - Not 0.0000012, but 1.2×10^{-6} \hspace{1cm} In C: 1.2e-6
 - In Binary:
 - Not 11000.000, but 1.1×2^4
 - Not 0.000101, but 1.01×2^{-4}

- We have to divvy up the bits we have (e.g., 32) among:
 - the sign (1 bit)
 - the significand
 - the exponent
Scientific Notation Translation

- Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: $1.011_2 \times 2^4 = 10110_2 = 22_{10}$
 - Example: $1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}$

- Convert from binary point to *normalized* scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - Example: $1101.001_2 = 1.101001_2 \times 2^3$

Practice: Convert 11.375_{10} to binary scientific notation

$$\frac{8+2+1+0.25+0.125}{2^3+2^1+2^0+2^{-2}+2^{-3}} = 1011.011_2 = \boxed{1.011011_2 \times 2^3}$$

Practice: Convert $\frac{1}{5}$ to binary

$$\frac{\frac{1}{5}}{2^{-3}} = \frac{\frac{3}{40}}{2^{-4}} = \frac{\frac{1}{16}}{2^{-9}} = \frac{\frac{1}{16} \left(\frac{1}{5} \right)}{2^{-4}} = \boxed{0.00111_2 \quad \text{same #, but shifted by 4}}$$
Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

There are many more details that we won’t cover
- It’s a 58-page standard...
IEEE Floating Point

- **IEEE 754**
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs portable
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs

- Driven by numerical concerns
 - **Scientists**/numerical analysts want them to be as real as possible
 - **Engineers** want them to be easy to implement and fast
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops
Floating Point Representation

- Numerical form:
 \[V_{10} = (-1)^s \times M \times 2^E \]
 - Sign bit \(s \) determines whether number is negative or positive
 - Significand (mantissa) \(M \) normally a fractional value in range \([1.0, 2.0)\)
 - Exponent \(E \) weights value by a (possibly negative) power of two
Floating Point Representation

- Numerical form:
 \[V_{10} = (-1)^s \times M \times 2^E \]
 - Sign bit \(s \) determines whether number is negative or positive
 - Significand (mantissa) \(M \) normally a fractional value in range \([1.0,2.0)\)
 - Exponent \(E \) weights value by a (possibly negative) power of two

- Representation in memory:
 - MSB \(s \) is sign bit \(s \)
 - \texttt{exp} field encodes \(E \) (but is \textit{not equal} to \(E \))
 - \texttt{frac} field encodes \(M \) (but is \textit{not equal} to \(M \))
Precisions

- **Single precision**: 32 bits
 - IEEE Standard
 - 1 bit for sign, 8 bits for exponent, 23 bits for fraction
 - In C a "float"

- **Double precision**: 64 bits
 - 1 bit for sign, 11 bits for exponent, 52 bits for fraction
 - In C a "double"

- Finite representation means not all values can be represented exactly. Some will be approximated.
Normalization and Special Values

\[V = (-1)^S \cdot M \cdot 2^E \]

- “Normalized” = \(M \) has the form \(1.xxxxx \)
 - As in scientific notation, but in binary
 - 0.011 \(\times 2^5 \) and 1.1 \(\times 2^3 \) represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it

- How do we represent 0.0? Or special or undefined values like 1.0/0.0?
Normalization and Special Values

\[V = (-1)^S \times M \times 2^E \]

- “Normalized” = \(M \) has the form 1.xxxxx
 - As in scientific notation, but in binary
 - 0.011 \(\times 2^5 \) and 1.1 \(\times 2^3 \) represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don’t bother to store it.

- Special values:
 - zero: \(\text{exp} = 00\ldots0 \quad \text{frac} = 00\ldots0 \)
 - +\(\infty \), -\(\infty \): \(\text{exp} = 11\ldots1 \quad \text{frac} = 00\ldots0 \)
 \[1.0/0.0 = -1.0/-0.0 = +\infty, \quad 1.0/-0.0 = -1.0/0.0 = -\infty \]
 - NaN (“Not a Number”): \(\text{exp} = 11\ldots1 \quad \text{frac} \neq 00\ldots0 \)
 Results from operations with undefined result: sqrt(-1), \(\infty - \infty \), \(\infty \times 0 \), etc.
 - Note: \(\text{exp}=11\ldots1 \) and \(\text{exp}=00\ldots0 \) are reserved, limiting exp range...
Normalized Values

\[V = (-1)^s \times M \times 2^E \]

- **Condition:** \(exp \neq 000\ldots0 \) and \(exp \neq 111\ldots1 \)
- **Exponent coded as biased value:** \(E = exp - Bias \)
 - \(exp \) is an *unsigned* value ranging from 1 to \(2^{k-2} \) (\(k \equiv \) # bits in \(exp \))
 - \(Bias = 2^{k-1} - 1 \)
 - Single precision: 127 (so \(exp: 1\ldots254, E: -126\ldots127 \))
 - Double precision: 1023 (so \(exp: 1\ldots2046, E: -1022\ldots1023 \))
 - These enable negative values for \(E \), for representing very small values
- **Significand coded with implied leading 1:** \(M = 1.\times\times\times\ldots\times_2 \)
 - \(\times\times\times\ldots\times \): the \(n \) bits of \(frac \)
 - Minimum when \(000\ldots0 \) (\(M = 1.0 \))
 - Maximum when \(111\ldots1 \) (\(M = 2.0 - \varepsilon \))
 - Get extra leading bit for “free”
Normalized Encoding Example

\[V = (-1)^S \times M \times 2^E \]

- **Value:** \(\text{float } f = 12345.0; \)
 - \(12345_{10} = 110000001110012 \)
 - \(= 1.10000001110012 \times 2^{13} \) (normalized form)

- **Significand:**
 - \(M = 1.10000001110012 \)
 - \(\text{frac} = \underbrace{10000001110010000000000000000} \)

- **Exponent:** \(E = \text{exp} - \text{Bias} \), so \(\text{exp} = E + \text{Bias} \)
 - \(E = 13 \)
 - \(\text{Bias} = +127 \)
 - \(\text{exp} = 140 = 10001100_2 \)

- **Result:**
 - \(0 \quad 10001100 \quad 10000001110010000000000000000 \)

- **Sign:** \(s \)
- **Exponent:** \(\text{exp} \)
- **Significand:** \(\text{frac} \)
Question

- What is the correct value encoded by the following floating point number?

- **0b 0 10000000 11000000000000000000000**

 - A. +0.75
 - B. +1.5
 - C. +2.75
 - D. +3.5
Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- **Floating-point operations** and rounding
- Floating-point in C

There are many more details that we won’t cover

- It’s a 58-page standard...
Floating Point Operations

- Unlike the representation for integers, the representation for floating-point numbers is not exact.
Floating Point Operations: Basic Idea

\[V = (-1)^S \times M \times 2^E \]

- \[x +_f y = \text{Round}(x + y) \]
- \[x \times_f y = \text{Round}(x \times y) \]

Basic idea for floating point operations:
- First, compute the exact result
- Then, round the result to make it fit into desired precision:
 - Possibly overflow if exponent too large
 - Possibly drop least-significant bits of significand to fit into \(\text{frac} \)
Floating Point Addition

\[(-1)^{s_1} M_1 \cdot 2^{E_1} + (-1)^{s_2} M_2 \cdot 2^{E_2} \]

Assume \(E_1 > E_2 \)

- **Exact Result:** \((-1)^s M \cdot 2^E \)
 - Sign \(s \), significand \(M \):
 - Result of signed align & add
 - Exponent \(E \): \(E_1 \)

- **Fixing**
 - If \(M \geq 2 \), shift \(M \) right, increment \(E \)
 - if \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)
 - Overflow if \(E \) out of range
 - Round \(M \) to fit \texttt{frac} precision

Line up the binary points
Floating Point Multiplication

\[(-1)^{s_1} M_1 2^{E_1} \times (-1)^{s_2} M_2 2^{E_2} \]

- **Exact Result:** \((-1)^s M 2^E\)
 - Sign \(s\):
 \[s_1 \oplus s_2 \]
 - Significand \(M\):
 \[M_1 \times M_2 \]
 - Exponent \(E\):
 \[E_1 + E_2 \]

- **Fixing**
 - If \(M \geq 2\), shift \(M\) right, increment \(E\)
 - If \(E\) out of range, overflow
 - Round \(M\) to fit \texttt{frac} precision
Mathematical Properties of FP Operations

- Exponent overflow yields $+\infty$ or $-\infty$
- Floats with value $+\infty$, $-\infty$, and NaN can be used in operations
 - Result usually still $+\infty$, $-\infty$, or NaN; but not always intuitive
- Floating point operations do not work like real math, due to rounding!!
 - Not associative: $(3.14+1e100)-1e100 \neq 3.14+(1e100-1e100)$
 - Not distributive: $100*(0.1+0.2) \neq 100*0.1+100*0.2$
 - Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing
Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

There are many more details that we won’t cover
 - It’s a 58-page standard...
Floating Point in C

- C offers two (well, 3) levels of precision

 float 1.0f single precision (32-bit)
 double 1.0 double precision (64-bit)
 long double 1.0L ("double double" or quadruple) precision (64-128 bits)

- `#include <math.h>` to get INFINITY and NAN constants

- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!

- Instead use `abs(f1 – f2) < 2^{-20}` or some other threshold
Floating Point Conversions in C

- **Casting between int, float, and double changes the bit representation**
 - **int → float**
 - May be rounded (not enough bits in mantissa: 23)
 - Overflow impossible
 - **int or float → double**
 - Exact conversion (all 32-bit ints representable; 52-bit frac)
 - **long → double**
 - Depends on word size (32-bit is exact, 64-bit may be rounded)
 - **double or float → int**
 - Truncates fractional part (rounded toward zero)
 - “Not defined” when out of range or NaN: generally sets to Tmin (even if the value is a very big positive)
Number Representation Really Matters

- **1991**: Patriot missile targeting error
 - clock skew due to conversion from integer to floating point
- **1996**: Ariane 5 rocket exploded ($1 billion)
 - overflow converting 64-bit floating point to 16-bit integer
- **2000**: Y2K problem
 - limited (decimal) representation: overflow, wrap-around
- **2038**: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to TMin in 2038
- **Other related bugs:**
 - 1982: Vancouver Stock Exchange 10% error in less than 2 years
 - 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
 - 1997: USS Yorktown “smart” warship stranded: divide by zero
 - 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
Floating Point and the Programmer

```c
#include <stdio.h>

int main(int argc, char* argv[]) {
    int a = 33554435;
    printf("a = %d\n(float) a = %f
\n\n", a, (float) a);

    float f1 = 1.0;
    float f2 = 0.0;
    int i;
    for (i = 0; i < 10; i++)
        f2 += 1.0/10.0;
    printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
    printf("f1 = %10.9f\n", f1);
    printf("f2 = %10.9f\n\n", f2);

    f1 = 1E30;
    f2 = 1E-30;
    float f3 = f1 + f2;
    printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
    return 0;
}
```

```bash
$ ./a.out
a = 33554435
(float) a = 33554436.000000
0x3f800000  0x3f800001
f1 = 1.000000000
f2 = 1.000000119
f1 == f3? yes
```
Floating Point Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some “simple fractions” have no exact representation (e.g., 0.2)
 - Can also lose precision, unlike ints
 - “Every operation gets a slightly wrong result”

- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results

- Never test floating point values for equality!
- Careful when converting between ints and floats!
Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
double d2 = ...;
```

Assume neither d nor f is NaN

- \(x == (\text{int})(\text{float}) \ x \)
- \(x == (\text{int})(\text{double}) \ x \)
- \(f == (\text{float})(\text{double}) \ f \)
- \(d == (\text{double})(\text{float}) \ d \)
- \(f == -(\neg f) \)
- \(2/3 == 2/3.0 \)
- \((d+d2)-d == d2 \)
Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```c
int x = ...;
float f = ...;
double d = ...;
double d2 = ...;
```

Assume neither `d` nor `f` is NaN

1. `x == (int)(float) x`
 - No, loss of precision
2. `x == (int)(double) x`
 - Yes
3. `f == (float)(double) f`
 - Yes
4. `d == (double)(float) d`
 - No
5. `f == -(-f)`
 - Yes
6. `2/3 == 2/3.0`
 - No
7. `(d+d2)-d == d2`
 - Yes, by small

Max Int: $2^{31} - 1$
Max Float: 1.999×2^{1023}
Max Double: 1.999×2^{3}