
University of Washington

Roadmap

1

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

 c.getMPG();

get_mpg:

 pushq %rbp

 movq %rsp, %rbp

 ...

 popq %rbp

 ret

Java: C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

Winter 2016 Machine Code & C

University of Washington

Basics of Machine Programming and
Architecture
 What is an ISA (Instruction Set Architecture)?

 A brief history of Intel processors and architectures

 C, assembly, machine code

2 Winter 2016 Machine Code & C

University of Washington

3

What makes programs run fast?

Hardware

User

program

in C

Assembler C

compiler

Code Time Compile Time Run Time

.exe file .c file

Translation

Winter 2016 Machine Code & C

University of Washington

Translation Impacts Performance

 The time required to execute a program depends on:
 The program (as written in C, for instance)

 The compiler: what set of assembler instructions it translates the C
program into

 The instruction set architecture (ISA): what set of instructions it makes
available to the compiler

 The hardware implementation: how much time it takes to execute an
instruction

4

What should the HW/SW interface contain?
Winter 2016 Machine Code & C

University of Washington

Instruction Set Architectures

 The ISA defines:
 The system’s state (e.g. registers, memory, program counter)

 The instructions the CPU can execute

 The effect that each of these instructions will have on the system state

5

CPU

Memory PC

Registers

Winter 2016 Machine Code & C

University of Washington

General ISA Design Decisions

 Instructions
 What instructions are available? What do they do?

 How are they encoded?

 Registers
 How many registers are there?

 How wide are they?

 Memory
 How do you specify a memory location?

6 Winter 2016 Machine Code & C

University of Washington

X86 ISA

 Processors that implement the x86 ISA completely dominate
the server, desktop and laptop markets

 Evolutionary design
 Backwards compatible up until 8086, introduced in 1978

 Added more features as time goes on

 Complex instruction set computer (CISC)
 Many different instructions with many different formats

 But, only small subset encountered with Linux programs

 (as opposed to Reduced Instruction Set Computers (RISC), which use
simpler instructions)

7 Winter 2016 Machine Code & C

University of Washington

Intel x86 Evolution: Milestones

8

 Name Date Transistors MHz

 8086 1978 29K 5-10
 First 16-bit Intel processor. Basis for IBM PC & DOS

 1MB address space

 386 1985 275K 16-33
 First 32 bit Intel processor , referred to as IA32

 Added “flat addressing”, capable of running Unix

 Pentium 4E 2004 125M 2800-3800
 First 64-bit Intel x86 processor, referred to as x86-64

 Core 2 2006 291M 1060-3500
 First multi-core Intel processor

 Core i7 2008 731M 1700-3900
 Four cores

Winter 2016 Machine Code & C

University of Washington

 Machine Evolution
 486 1989 1.9M

 Pentium 1993 3.1M

 Pentium/MMX 1997 4.5M

 PentiumPro 1995 6.5M

 Pentium III 1999 8.2M

 Pentium 4 2001 42M

 Core 2 Duo 2006 291M

 Core i7 2008 731M

 Added Features
 Instructions to support multimedia operations

 Parallel operations on 1, 2, and 4-byte data

 Instructions to enable more efficient conditional operations

More cores!

9

Intel x86 Processors
Intel Core i7

Winter 2016 Machine Code & C

University of Washington

More information

 References for Intel processor specifications:
 Intel’s “automated relational knowledgebase”:

 http://ark.intel.com/

 Wikipedia:

 http://en.wikipedia.org/wiki/List_of_Intel_microprocessors

10 Winter 2016 Machine Code & C

http://ark.intel.com/
http://en.wikipedia.org/wiki/List_of_Intel_microprocessors

University of Washington

x86 Clones: Advanced Micro Devices (AMD)

 Same ISA, different implementation

 Historically
 AMD has followed just behind Intel

 A little bit slower, a lot cheaper

 Then
 Recruited top circuit designers from Digital Equipment and other

downward trending companies

 Built Opteron: tough competitor to Pentium 4

 Developed x86-64, their own extension of x86 to 64 bits

11 Winter 2016 Machine Code & C

University of Washington

Intel’s Transition to 64-Bit

 Intel attempted radical shift from IA32 to IA64 (2001)
 Totally different architecture (Itanium) and ISA than x86

 Executes IA32 code only as legacy

 Performance disappointing

 AMD stepped in with evolutionary solution (2003)
 x86-64 (also called “AMD64”)

 Intel felt obligated to focus on IA64
 Hard to admit mistake or that AMD is better

 Intel announces “EM64T” extension to IA32 (2004)
 Extended Memory 64-bit Technology

 Almost identical to AMD64!

 Today: all but low-end x86 processors support x86-64
 But, lots of code out there is still just IA32

12 Winter 2016 Machine Code & C

University of Washington

Our Coverage in 351

 x86-64
 The new 64-bit x86 ISA – all lab assignments use x86-64!

 Book covers x86-64

 Previous versions of CSE 351 and 2nd edition of textbook
covered IA32 (traditional 32-bit x86 ISA) and x86-64

 We will only cover x86-64 this quarter

13 Winter 2016 Machine Code & C

University of Washington

Definitions

 Architecture: (also instruction set architecture or ISA)
The parts of a processor design that one needs to understand
to write assembly code
 “What is directly visible to software”

 Microarchitecture: Implementation of the architecture
 CSE/EE 469, 470

 Is cache size “architecture”?

 How about CPU frequency?

 And number of registers?

14 Winter 2016 Machine Code & C

University of Washington

CPU

Assembly Programmer’s View

 Programmer-Visible State

 PC: Program counter

 Address of next instruction

 Called “RIP” (x86-64)

 Register file

 Heavily used program data

 Condition codes

 Store status information about most
recent arithmetic operation

 Used for conditional branching

PC
Registers

Memory

• Code
• Data
• Stack

Addresses

Data

Instructions Condition
Codes

 Memory

 Byte addressable array

 Code and user data

 Includes stack used to support
procedures (we’ll come back to that)

15 Winter 2016 Machine Code & C

University of Washington

text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries (.a)

Turning C into Object Code
 Code in files p1.c p2.c

 Compile with command: gcc -Og p1.c p2.c -o p

 Use basic optimizations (-Og) [New to recent versions of GCC]

 Put resulting machine code in file p

16 Winter 2016 Machine Code & C

University of Washington

Compiling Into Assembly
C Code (sum.c)

 long plus(long x, long y);

void sumstore(long x, long y,

 long *dest)

{

 long t = plus(x, y);

 *dest = t;

}

Generated x86-64 Assembly
 sumstore:
 pushq %rbx

 movq %rdx, %rbx

 call plus

 movq %rax, (%rbx)

 popq %rbx

 ret

Obtain with command:

gcc –Og –S sum.c

Produces file sum.s

Warning: You may get different results with other
versions of gcc and different compiler settings.

Winter 2016 Machine Code & C 17

University of Washington

Machine Instruction Example
 C Code

 Store value t where designated by
dest

 Assembly
 Move 8-byte value to memory

 Quad words in x86-64 parlance

 Operands:

t: Register %rax

dest: Register %rbx

*dest: Memory M[%rbx]

 Object Code
 3-byte instruction

 Stored at address 0x40059e

*dest = t;

movq %rax, (%rbx)

0x40059e: 48 89 03

Winter 2016 Machine Code & C 18

University of Washington

Code for sumstore
 0x0400595:
 0x53

 0x48

 0x89

 0xd3

 0xe8

 0xf2

 0xff

 0xff

 0xff

 0x48

 0x89

 0x03

 0x5b

 0xc3

Object Code

 Assembler
 Translates .s into .o

 Binary encoding of each instruction

 Nearly-complete image of executable code

 Missing linkages between code in different
files

 Linker
 Resolves references between files

 Combines with static run-time libraries

 E.g., code for malloc, printf

 Some libraries are dynamically linked

 Linking occurs when program begins
execution

• Total of 14 bytes

• Each instruction
1, 3, or 5 bytes

• Starts at address
0x0400595

Winter 2016 Machine Code & C 19

University of Washington

Disassembled

Disassembling Object Code

 Disassembler
objdump –d sum

 Useful tool for examining object code (Try man 1 objdump)

 Analyzes bit pattern of series of instructions

 Produces approximate rendition of assembly code

 Can be run on either a.out (complete executable) or .o file

0000000000400595 <sumstore>:

 400595: 53 push %rbx

 400596: 48 89 d3 mov %rdx,%rbx

 400599: e8 f2 ff ff ff callq 400590 <plus>

 40059e: 48 89 03 mov %rax,(%rbx)

 4005a1: 5b pop %rbx

 4005a2: c3 retq

Winter 2016 Machine Code & C 20

University of Washington

Disassembled

Dump of assembler code for function sumstore:

 0x0000000000400595 <+0>: push %rbx

 0x0000000000400596 <+1>: mov %rdx,%rbx

 0x0000000000400599 <+4>: callq 0x400590 <plus>

 0x000000000040059e <+9>: mov %rax,(%rbx)

 0x00000000004005a1 <+12>:pop %rbx

 0x00000000004005a2 <+13>:retq

Alternate Disassembly

 Within gdb Debugger
gdb sum

disassemble sumstore

 Disassemble procedure

x/14bx sumstore

 Examine the 14 bytes starting at sumstore

Object
 0x0400595:

 0x53

 0x48

 0x89

 0xd3

 0xe8

 0xf2

 0xff

 0xff

 0xff

 0x48

 0x89

 0x03

 0x5b

 0xc3

Winter 2016 Machine Code & C 21

University of Washington

What Can be Disassembled?

 Anything that can be interpreted as executable code

 Disassembler examines bytes and reconstructs assembly source

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".

Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp

30001001: 8b ec mov %esp,%ebp

30001003: 6a ff push $0xffffffff

30001005: 68 90 10 00 30 push $0x30001090

3000100a: 68 91 dc 4c 30 push $0x304cdc91

Reverse engineering forbidden by
Microsoft End User License Agreement

Winter 2016 Machine Code & C 22

