Number Representation & Operators

CSE 351
Section 2
January 14, 2016
Number Bases

• Any numerical value can be represented as a linear combination of powers of base n, where n is an integer greater than 1

• Example: decimal ($n=10$)
 - Decimal numbers are just linear combinations of 1, 10, 100, 1000, etc.
 - E.g.: $1234 = 1 \times 1000 + 2 \times 100 + 3 \times 10 + 4 \times 1$

• We can also use the base $n=2$ (binary) or $n=16$ (hexadecimal)
Binary Numbers

• Each digit is either a 1 or a 0
• Each digit corresponds to a power of 2
• Why use binary?
 • Easy to physically represent two states in memory, registers, across wires, etc.
 • High/Low voltage levels
 • This can scale to much larger numbers by using more hardware to store more bits
Decimal to Binary Conversion

To convert the decimal number d to binary, do the following:

1. **Compute** $(d \mod 2)$. This will give you the lowest-order bit.

2. **Divide** d by 2, round down to the nearest integer, and continue the process to get the higher order bits.

Example: Convert 25_{10} to binary.

<table>
<thead>
<tr>
<th>First bit:</th>
<th>$25 \mod 2 = 1$</th>
<th>$(25 / 2) = 12$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second bit:</td>
<td>$12 \mod 2 = 0$</td>
<td>$(12 / 2) = 6$</td>
</tr>
<tr>
<td>Third bit:</td>
<td>$6 \mod 2 = 0$</td>
<td>$(6 / 2) = 3$</td>
</tr>
<tr>
<td>Fourth bit:</td>
<td>$3 \mod 2 = 1$</td>
<td>$(3 / 2) = 1$</td>
</tr>
<tr>
<td>Fifth bit:</td>
<td>$1 \mod 2 = 1$</td>
<td>$(1 / 2) = 0$</td>
</tr>
</tbody>
</table>

Since we hit 0, we’re done! $25_{10} = 11001_2$.
Hexadecimal Numbers

• Same concept as decimal and binary, but the base is 16

• Why use hexadecimal?
 • Easy to convert between hex and binary (1 hex digit represents 4 bits)
 • Much more compact than binary
 • And best of all, you can make fun words with letters A-F!
Decimal to Hexadecimal Conversion
To convert a decimal number to hexadecimal, use the same technique we used for binary, but divide/mod by 16 instead of 2.

- Hexadecimal numbers have a prefix of "0x"

Example: Convert 1234_{10} to hexadecimal

First digit:	$1234 \% 16 = 2$	$(1234 / 16) = 77$
Second digit:	$77 \% 16 = 13_{10} = \text{D}_{16}$	$(77 / 16) = 4$
Third digit:	$4 \% 16 = 4$	$(4 / 16) = 0$

We’re done because we hit 0!

$1234_{10} = 0\times4D2 = 4D2_{16}$
Binary to Hexadecimal Conversion

Converting between binary and hexadecimal is both the easiest and most useful conversion for 351. Hex and Binary have a direct correlation, where 1 hex digit maps to 4 bits.

Example: Convert 0xA5E2 to binary.

We can convert this number digit by digit:

\[
\begin{array}{c}
A & 5 & E & 2 \\
1010 & 0101 & 1110 & 0010
\end{array}
\]

Converting back to hex is the exact same process; break the bit vector into groups of 4 and convert to hex.
Representing Signed Integers

• Two common ways:
 • **Sign & Magnitude**
 • Use 1 bit for the sign, remaining bits for magnitude
 • Works OK, but:
 • There are 2 ways to represent zero (−0 and 0)
 • Arithmetic is tricky (4 − 3 ≠ 4 + (−3))
 • **Two’s Complement**
 • For positives, similar to regular binary representation
 • But, highest bit has a negative weight
 • Solves Sign-and-Magnitude’s problems!
Two’s Complement

• This is an example of the range of numbers that can be represented by a 4-bit two’s complement number.

• An n-bit, two’s complement number can represent the range $[-2^{n-1}, 2^{n-1} - 1]$.
 • Note the asymmetry of this range about 0 – there’s one more negative number than positive.

• Note what happens when you overflow.

• If you still don’t understand it, speak up!
 • Very confusing concept.
Understanding Two’s Complement Numbers

- Understanding the two’s complement representation of integers is much like converting binary to decimal, but with one catch.

- Because of the cyclic nature of two’s complement, you **subtract** the value of the most significant bit.

Example: In 8-bit land, what signed int does `0b11010110` represent?

- We follow the same process as binary to decimal conversion. The less significant 7 bits give us:
 \[(1 \times 2^1) + (1 \times 2^2) + (1 \times 2^4) + (1 \times 2^6) = 86\]

- Now, however, we **subtract** the highest bit value.
 \[86 - (1 \times 2^7) = -42_{10}\]
Understanding Two’s Complement

[A Handy Trick]

• There’s a simpler way to find the value of a two’s complement number, using the handy formula:

\[\sim x + 1 = -x. \]

• We can rewrite this as \(x = \sim(-x - 1) \), i.e. subtract 1 from the given number, and flip the bits to get the positive portion of the number.

Example: \(\text{0b}11010110 \)

• Subtract 1: \(\text{0b}110101\textbf{10} - 1 = \text{0b}110101\textbf{01} \)

• Flip the bits: \(\text{0b}00101010 = (32+8+2)_{10} = 42_{10} \)

• So the original number we had was \(-42_{10}\).
Bitwise Operators

- **NOT:** ~
 - This will flip all bits in the operand

- **AND:** &
 - This will perform a bitwise AND on every pair of bits

- **OR:** |
 - This will perform a bitwise OR on every pair of bits

- **XOR:** ^
 - This will perform a bitwise XOR on every pair of bits

- **SHIFT:** <<, >>
 - This will shift the bits right or left
 - logical vs. arithmetic
Logical Operators

• **NOT: !**
 - Evaluates the entire operand, rather than each bit
 - Produces a 1 if \(\text{== 0} \), produces 0 if nonzero

• **AND: &&**
 - Produces 1 if both operands are nonzero

• **OR: ||**
 - Produces 1 if either operand is nonzero
Common Operator Uses

• A double bang (!!!) is useful when normalizing values to 0 or 1
 • Imitates Boolean types

• Shifts are useful for multiplying/dividing quickly
 • Most multiplications are reduced to shifts when possible by GCC already
 • When writing assembly routines, shifts will be more useful
 • Shifts are also consistent for negative numbers (thanks to sign extension)

• DeMorgan’s Laws:
 • \(\sim (A \ | \ B) \equiv (\sim A \ & \ \sim B) \)
 • \(\sim (A \ & \ B) \equiv (\sim A \ | \ \sim B) \)
Masks

- These are usually strings of 1s that are used to isolate a subset of bits in an operand
 - Example: the mask 0xFF = ...0011111111 will “mask” the first byte of an integer
- Once you have created a mask, you can shift it left or right
 - Example: the mask 0xFF << 8 will “mask” the second byte of an integer
- You can apply a mask in different ways
 - To set bits in x, you can do x = x | MASK
 - To invert bits in x, you can do x = x ^ MASK
 - To erase everything but the masked bits in x, do x = x & MASK
Masks

• These are usually strings of 1s that are used to isolate a subset of bits in an operand
 • Example: the mask 0xFF = \ldots 001111111 will “mask” the first byte of an integer

• Once you have created a mask, you can shift it left or right
 • Example: the mask 0xFF << 8 will “mask” the second byte of an integer

• You can apply a mask in different ways
 • To set bits in \(x \), you can do \(x = x | \text{MASK} \)
 • To invert bits in \(x \), you can do \(x = x ^ \text{MASK} \)
 • To erase everything but the masked bits in \(x \), do \(x = x & \text{MASK} \)
Application: Symmetric Encryption

• This is an example that shows how XOR can be used to encrypt data.

• Say Alice wishes to communicate message \(M \) to Bob
 • Let \(M \) be the bit string: \(0b11011010 \)

• Both Alice and Bob have a secret cipher key \(C \)
 • Let \(C \) be the bit string: \(0b01100010 \)

• Alice sends Bob the encrypted message \(M' = M \oplus C \)
 • \(M' = 0b10111000 \)

• Bob applies \(C \) to \(M' \) to retrieve \(M \), since \((M \oplus C) \oplus C = M \)
 • \(M' \oplus C = 0b11011010 \)

• XOR ciphers are not very secure by themselves, but the XOR operation is used in some modes of AES encryption
Application: Gray Codes

• Gray Codes encode numbers such that consecutive numbers only differ in their representations by 1 bit
 • Useful when trying to transfer counter values across different clock domains (common in FIFOs)
 • If each wire represents one binary digit, we want to ensure that when the counter increments, the voltage level changes only on one wire

• Let \(n \) be our counter output
 • \((n \gg 1) \land n \) will produce a gray coded version of \(n \)

• If we receive the gray code \(g \), we need to convert it to \(n \):

```c
for (int mask = g >> 1; mask != 0; mask >> 1) {
    g = g ^ mask;
}
```

For an example, compile and run `gray_code.c`
Lab 1

• Worksheet in class

• Tips:
 • Work on 8-bit versions first, then scale your solution to work for 32-bit inputs
 • Save intermediate results in variables for clarity
 • SHIFTING BY MORE THAN 31 BITS IS UNDEFINED! This will not yield 0.

• Any questions for the good of the class?
Example Problems

• Create 0xFFFFFFFF using only one operator
 • Limited to constants from 0x00 to 0xFF
 • Naïve approach:
 0xFF + (0xFF << 8) + (0xFF << 16) ...
 • Smart approach:
 \(~0x00 = 0xFFFFFFFF\)
Example Problems

• Replace the leftmost byte of a 32-bit integer with 0xAB

• Let our integer be x
• First, we want to create a mask for the lower 24 bits of the image
 • $\neg(0xFF \ll 24)$ will do that using just two operations
• $(x \& \text{mask})$ will zero out the leftmost 8 bits
• Now, we want to OR in 0xAB to those zeroed-out bits
• Final result:
 $$(x \& \text{mask}) \mid (0xAB \ll 24)$$
• Total operators: 5!