C:
car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Java:
Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =
 c.getMPG();

Assembly language:
get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Machine code:
0111010000011000
100011010000010000000010
1000100111000010
110000011111101000001111

Computer system:
Integers

- Representation of integers: unsigned and signed
- Casting
- Arithmetic and shifting
- Sign extension
But before we get to integers....

- Encode a standard deck of playing cards.
- 52 cards in 4 suits
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?
Two possible representations

- 52 cards – 52 bits with bit corresponding to card set to 1

“One-hot” encoding

Drawbacks:
- Hard to compare values and suits
- Large number of bits required
Two possible representations

- **52 cards – 52 bits with bit corresponding to card set to 1**

 - “One-hot” encoding
 - Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required

- **4 bits for suit, 13 bits for card value – 17 bits with two set to 1**

 - Pair of one-hot encoded values
 - Easier to compare suits and values
 - Still an excessive number of bits

- **Can we do better?**
Two better representations

- Binary encoding of all 52 cards – only 6 bits needed
 - Fits in one byte
 - Smaller than one-hot encodings.
 - How can we make value and suit comparisons easier?

low-order 6 bits of a byte
Two better representations

- **Binary encoding of all 52 cards – only 6 bits needed**
 - Fits in one byte
 - Smaller than one-hot encodings.
 - How can we make value and suit comparisons easier?

- **Binary encoding of suit (2 bits) and value (4 bits) separately**
 - Also fits in one byte, and easy to do comparisons

<table>
<thead>
<tr>
<th>K</th>
<th>Q</th>
<th>J</th>
<th>...</th>
<th>3</th>
<th>2</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101</td>
<td>1100</td>
<td>1011</td>
<td></td>
<td>0011</td>
<td>0010</td>
<td>0001</td>
</tr>
</tbody>
</table>
#define SUIT_MASK 0x30

```c
int sameSuitP(char card1, char card2) {
    return (!(((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK))));
    // return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}
```

SUIT_MASK = 0x30 = \[0, 0, 1, 1, 0, 0, 0, 0\]

use `char` for a single byte

```c
char hand[5];       // represents a 5-card hand
char card1, card2;  // two cards to compare
card1 = hand[0];
card2 = hand[1];
...
if ( sameSuitP(card1, card2) ) { ... }
```

mask: a bit vector that, when bitwise ANDed with another bit vector v, turns all but the bits of interest in v to 0
#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
 return (!(((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK))));
 // return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}

mask: a bit vector that, when bitwise ANDed with another bit vector v, turns all but the bits of interest in v to 0

!(x^y) equivalent to x==y
#compare Card Values

```c
#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
    return ((unsigned int)(card1 & VALUE_MASK) >
             (unsigned int)(card2 & VALUE_MASK));
}
```

VALUE_MASK = 0x0F =
\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]

mask: a bit vector that, when bitwise ANDed with another bit vector v, turns all but the bits of interest in v to 0

char hand[5]; // represents a 5-card hand
char card1, card2; // two cards to compare
card1 = hand[0];
card2 = hand[1];
...
if (greaterValue(card1, card2)) { ... }
#defines VALUE_MASK \ 0x0F

int greaterValue(char card1, char card2) {
 return ((unsigned int)(card1 & VALUE_MASK) >
 (unsigned int)(card2 & VALUE_MASK));
}

mask: a bit vector that, when bitwise ANDed with another bit vector v, turns all but the bits of interest in v to 0

VALUE_MASK: 0 0 0 0 1 1 1 1

2_10 > 13_10 = 0 (false)
April 6

Announcements
Thurs 10:30am Section moved to EEB 045.
Encoding Integers

- The hardware (and C) supports two flavors of integers:
 - unsigned – only the non-negatives
 - signed – both negatives and non-negatives

- Cannot represent all the integers
 - There are only 2^W distinct bit patterns of W bits
 - Unsigned values: 0 ... $2^W - 1$
 - Signed values: -2^{W-1} ... $2^{W-1} - 1$

- Reminder: terminology for binary representations
 - “Most-significant” or “high-order” bit(s) (MSB)
 - “Least-significant” or “low-order” bit(s)
Unsigned Integers

- Unsigned values are just what you expect
 - \(b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + b_52^5 + \ldots + b_12^1 + b_02^0 \)
 - Useful formula: \(1+2+4+8+\ldots+2^{N-1} = 2^N - 1 \)

- Add and subtract using the normal “carry” and “borrow” rules, just in binary.

\[
\begin{array}{c}
63 \\
+ 8 \\
\hline
71
\end{array}
\begin{array}{c}
00111111 \\
+00001000 \\
\hline
01000111
\end{array}
\]

- How would you make signed integers?
Sign-and-Magnitude

- Use high-order bit to indicate positive/negative (the “sign bit”)

- **Positive numbers:** sign = 0
 - Does the natural thing, same as for unsigned

- **Negative numbers:** sign = 1

- **Examples (8 bits):**
 - 0x00 = 00000000₂ is non-negative, because the sign bit is 0
 - 0x7F = 0111111₁₂ is non-negative (+127₁₀)
 - 0x85 = 10000101₂ is negative (-5₁₀)
 - 0x80 = 10000000₂ is negative...
 - Negative zero!
Sign-and-Magnitude

- **High-order bit (MSB) flips the sign, rest of the bits are magnitude**
Sign-and-Magnitude

- **High-order bit (MSB)** flips the sign, rest of the bits are **magnitude**

- **Downsides**
 - There are two representations of 0! (bad for checking equality)
Sign-and-Magnitude

- **High-order bit (MSB)** flips the sign, rest of the bits are **magnitude**

- **Downsides**
 - There are two representations of 0! (bad for checking equality)
 - **Arithmetic is cumbersome.**
 - Example:
 \[
 4 - 3 \neq 4 + (-3)
 \]

\[
\begin{array}{c|c}
4 & 0100 \\
-3 & 0011 \\
\hline
1 & \text{X}
\end{array}
\quad
\begin{array}{c|c}
4 & 0100 \\
+(-3) & 1011 \\
\hline
7 & 1111
\end{array}
\]

How do we solve these problems?
Two’s Complement

- High-order bit (MSB) still indicates that the value is negative
Two’s Complement Negatives

- High-order bit (MSB) *still* indicates that the value is *negative*
 - But instead, let MSB have *same value*, but *negative weight*.

\[
\begin{align*}
 b_{w-1} = 1 & \text{ adds } -2^{w-1} \text{ to the value} \quad \text{for } i < w-1: \ b_i = 1 & \text{ adds } +2^i \text{ to the value.}
\end{align*}
\]
Two’s Complement Negatives

- High-order bit (MSB) *still* indicates that the value is *negative*
 - But instead, let MSB have *same value*, but *negative weight*.

\[b_{w-1} = 1 \text{ adds } -2^{w-1} \text{ to the value} \]
\[\text{for } i < w-1: \ b_i = 1 \text{ adds } +2^i \text{ to the value.} \]

- e.g. *unsigned* 1010\(_2\):
 \[1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 10_{10} \]
- 2’s compl. 1010\(_2\):
 \[-1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = -6_{10} \]
Two’s Complement Negatives

- High-order bit (MSB) *still* indicates that the value is *negative*
 - But instead, let MSB have *same value*, but *negative weight*.

\[b_{w-1} = 1 \text{ adds } -2^{w-1} \text{ to the value} \]
for \(i < w-1 \): \[b_i = 1 \text{ adds } +2^i \text{ to the value.} \]

-1 is represented as \(1111_2 = -2^3 + (2^3 - 1) \)
 - MSB makes it super negative, add up all the other bits to get back up to -1

E.g. Unsigned \(1010_2 \):
\[1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 10_{10} \]
2’s compl. \(1010_2 \):
\[-1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = -6_{10} \]
Two’s Complement Negatives

- High-order bit (MSB) still indicates that the value is negative
 - But instead, let MSB have same value, but negative weight.

\[b_{w-1} = 1 \text{ adds } -2^{w-1} \text{ to the value} \]
\[\text{for } i < w-1: \ b_i = 1 \text{ adds } +2^i \text{ to the value.} \]

-1 is represented as \(1111_2 = -2^3 + (2^3 - 1) \)

Advantages:
- Single zero
- Simple arithmetic

\[\begin{array}{c}
1010_2: \\
1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 10_{10} \\
2's \ compl. \ 1010_2: \\
-1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = -6_{10} \end{array} \]
4-bit Unsigned vs. Two’s Complement

1 0 1 1

\[2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1 \]

11

\[-2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1 \]

-5
4-bit Unsigned vs. Two’s Complement

1011

$2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1$

- $2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1$

(math) difference = 16 = 2^4
Integers & Floats

4-bit Unsigned vs. Two’s Complement

1 0 1 1

2^3 x 1 + 2^2 x 0 + 2^1 x 1 + 2^0 x 1

11

(math) difference = 16 = 2^4

-2^3 x 1 + 2^2 x 0 + 2^1 x 1 + 2^0 x 1

-5
Two’s Complement Arithmetic

- The same addition procedure works for both unsigned and two’s complement integers
 - Simplifies hardware: only one algorithm for addition
 - Algorithm: simple addition, discard the highest carry bit
 - Called “modular” addition: result is sum modulo 2^W

- Examples:

<table>
<thead>
<tr>
<th></th>
<th>0100</th>
<th>0100</th>
<th>1100</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>+3</td>
<td>+3</td>
<td>−4</td>
</tr>
<tr>
<td></td>
<td>+011</td>
<td>+1101</td>
<td>+0011</td>
</tr>
</tbody>
</table>
Two’s Complement Arithmetic

- The same addition procedure works for both unsigned and two’s complement integers
 - Simplifies hardware: only one algorithm for addition
 - Algorithm: simple addition, discard the highest carry bit
 - Called “modular” addition: result is sum modulo 2^W

- Examples:

<table>
<thead>
<tr>
<th>4</th>
<th>0100</th>
<th>4</th>
<th>0100</th>
<th>−4</th>
<th>1100</th>
</tr>
</thead>
<tbody>
<tr>
<td>+3</td>
<td>+011</td>
<td>−3</td>
<td>+1101</td>
<td>+3</td>
<td>+001</td>
</tr>
<tr>
<td>=7</td>
<td>=011</td>
<td>=1</td>
<td>=0001</td>
<td>=−1</td>
<td>=111</td>
</tr>
</tbody>
</table>

(\textit{drop carry})
Two’s Complement

Why does it work?

- Put another way, for all positive integers x, we want:

 \[
 \begin{array}{c}
 \text{Bit representation of } x \\
 + \text{ Bit representation of } -x \\
 \hline
 \end{array}
 \]

 0 (ignoring the carry-out bit)

- What should the 8-bit representation of -1 be?

 \[
 \begin{array}{c}
 00000001 \\
 + ???? ????? \\
 \hline
 00000000
 \end{array}
 \]

 (we want whichever bit string gives the right result)

- Other examples:

 \[
 \begin{array}{cc}
 00000010 & 00000011 \\
 + ???? ????? & + ???? ????? \\
 \hline
 00000000 & 00000000
 \end{array}
 \]

Two’s Complement

Why does it work?

- Put another way, for all positive integers \(x\), we want:

 \[
 \text{Bit representation of } x + \text{Bit representation of } -x = 0 \quad \text{(ignoring the carry-out bit)}
 \]

- What should the 8-bit representation of -1 be?

 \[
 \begin{array}{c}
 00000001 \\
 + 11111111 \\
 \hline
 00000000
 \end{array}
 \]

 (we want whichever bit string gives the right result)

- Other examples:

 \[
 \begin{array}{c}
 00000010 \\
 + 11111110 \\
 \hline
 00000000
 \end{array} \quad \begin{array}{c}
 00000011 \\
 + 11111101 \\
 \hline
 00000000
 \end{array}
 \]

Turns out to be the bitwise complement plus 1!
Two’s Complement

Negate any 2s-complement integer
- Take bitwise complement (flip all the bits) and then add one!
 \[\sim x + 1 = -x \]

\[
\begin{array}{c}
\sim 0101 & 5_{10} \\
1010 & \\
+ 0001 & \\
1011 & -5_{10}
\end{array}
\]

You can even do it again and it still works!
Unsigned & Signed Numeric Values

<table>
<thead>
<tr>
<th>bits</th>
<th>Unsigned</th>
<th>Signed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>

- Signed and unsigned integers have limits.
Overflow/Wrapping: Unsigned

addition: drop the carry bit

\[
\begin{array}{c}
15 \\
+ 2 \\
\hline
17 \\
\end{array}
\quad
\begin{array}{c}
1111 \\
+ 0010 \\
\hline
10001 \\
\end{array}
\]

Modular Arithmetic
Overflow/Wrapping: Two’s Complement

addition: drop the carry bit

\[
\begin{array}{c}
 -1 \\
 + 2 \\
 \hline
 1
 \\
 + 0010
 \\
 \hline
 1111
 \\
 + 0011
 \\
 \hline
 0110
 \\
 + 0010
 \\
 \hline
 0111
 \\
 + 0001
 \\
 \hline
 0000
 \\
 + 0001
 \\
 \hline
 0001
 \\
 + 0011
 \\
 \hline
 0011
 \\
 + 0101
 \\
 \hline
 0100
 \\
 + 0100
 \\
 \hline
 0101
 \\
 + 0101
 \\
 \hline
 0110
 \\
 + 0110
 \\
 \hline
 0111
 \\
 + 1000
 \\
 \hline
 1001
 \\
 + 1001
 \\
 \hline
 1010
 \\
 + 1010
 \\
 \hline
 1011
 \\
 + 1011
 \\
 \hline
 1100
 \\
 + 1100
 \\
 \hline
 1101
 \\
 + 1101
 \\
 \hline
 1110
 \\
 + 1110
 \\
 \hline
 1111
 \\
 + 1111
 \\
 \hline
 \end{array}
\]

Modular Arithmetic
Overflow/Wrapping: Two’s Complement

addition: drop the carry bit

\[
\begin{array}{c c c c c c c}
\text{-1} & + & 2 & = & 1 & 11111 & + & 00100 \\
\hline
\text{1} & \text{10001}
\end{array}
\]

\[
\begin{array}{c c c c c c c}
\text{6} & + & 3 & = & 9 & 01110 & + & 00111 \\
\hline
\text{9} & \text{1001}
\end{array}
\]

Modular Arithmetic

For signed: overflow if operands have same sign and result’s sign is different.
Signed and unsigned integers have limits.

- If you compute a number that is too big (positive), it wraps.
- If you compute a number that is too small (negative), it wraps.

The CPU may be capable of “throwing an exception” for overflow on signed values.

- It won't for unsigned.

But C and Java just cruise along silently when overflow occurs... Oops.
Signed/Unsigned Conversion

- **Two’s Complement ⇒ Unsigned**
 - Ordering Inversion
 - Negative ⇒ Big Positive

2’s Complement Range

Unsigned Range

- UMax
- UMax – 1
- Tmax + 1
- Tmax

TMax

- 0
- –1
- –2

TMin

TMax

- 0
Values To Remember

Unsigned Values
- **UMin** = 0
 - 000...0
- **UMax** = $2^w - 1$
 - 111...1

Two’s Complement Values
- **TMin** = -2^{w-1}
 - 100...0
- **TMax** = $2^{w-1} - 1$
 - 011...1
- Negative one
 - 111...1 0xF...F

Values for W = 32

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>4,294,967,296</td>
<td>FF FF FF FF</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>Tmax</td>
<td>2,147,483,647</td>
<td>7F FF FF FF</td>
<td>01111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-2,147,483,648</td>
<td>80 00 00 00</td>
<td>10000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF FF FF</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00 00 00</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>

Values for W = 64:
- **LONG_MIN** = -9223372036854775808
- **LONG_MAX** = 9223372036854775807
- **ULONG_MAX** = 18446744073709551615
In C: Signed vs. Unsigned

- **Integer Literals (constants)**
 - By default are considered to be signed integers
 - Use “U” (or “u”) suffix to force unsigned:
 - 0U, 4294967259u
In C: Signed vs. Unsigned

- **Casting**
 - `int tx, ty;
 - `unsigned ux, uy;`
 - **Explicit** casting between signed & unsigned:
 - `tx = (int) ux;`
 - `uy = (unsigned) ty;`
 - **Implicit** casting also occurs via assignments and function calls:
 - `tx = ux;`
 - `uy = ty;`
 - The gcc flag `-Wsign-conversion` produces warnings for implicit casts, but `-Wall` does not!

- **How does casting between signed and unsigned work?**
- **What values are going to be produced?**
In C: Signed vs. Unsigned

Casting

- `int tx, ty;`
- `unsigned ux, uy;`

- Explicit casting between signed & unsigned:
 - `tx = (int) ux;`
 - `uy = (unsigned) ty;`

- Implicit casting also occurs via assignments and function calls:
 - `tx = ux;`
 - `uy = ty;`
 - The gcc flag `-Wsign-conversion` produces warnings for implicit casts, but `-Wall` does not!

- How does casting between signed and unsigned work?
- What values are going to be produced?

 - *Bits are unchanged, just interpreted differently!*
Casting Surprises

- Expression Evaluation
 - If you mix unsigned and signed in a single expression, then *signed values are implicitly cast to unsigned*.
 - Including comparison operations `<`, `>`, `==`, `<=`, `>=`
Casting Surprises

- Examples for $W = 32$:
 Reminder: $TMIN = -2,147,483,648$ $TMAX = 2,147,483,647$

<table>
<thead>
<tr>
<th>Constant$_1$</th>
<th>Constant$_2$</th>
<th>Relation</th>
<th>Interpret the bits as:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>Unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>Signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>Unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td>></td>
<td>Signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483648</td>
<td><</td>
<td>Unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>Signed</td>
</tr>
<tr>
<td>(unsigned int)-1</td>
<td>-2</td>
<td>></td>
<td>Unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>Unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>Signed</td>
</tr>
</tbody>
</table>
Casting Surprises

- Examples for $W = 32$:
 Reminder: $T_{MIN} = -2,147,483,648$, $T_{MAX} = 2,147,483,647$

<table>
<thead>
<tr>
<th>Constant$_1$</th>
<th>Constant$_2$</th>
<th>Relation</th>
<th>Interpret the bits as:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>Unsigned</td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111</td>
<td>0U</td>
<td><</td>
<td>Signed</td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111</td>
<td>0U</td>
<td>></td>
<td>Unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td>></td>
<td>Signed</td>
</tr>
<tr>
<td>0111 1111 1111 1111 1111 1111 1111</td>
<td>-2147483648</td>
<td><</td>
<td>Unsigned</td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111</td>
<td>-2</td>
<td>></td>
<td>Signed</td>
</tr>
<tr>
<td>(unsigned) -1</td>
<td>-2</td>
<td>></td>
<td>Unsigned</td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111</td>
<td>-2</td>
<td>></td>
<td>Unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>Unsigned</td>
</tr>
<tr>
<td>0111 1111 1111 1111 1111 1111 1111</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>Signed</td>
</tr>
</tbody>
</table>
Sign Extension

What happens if you convert a 32-bit signed integer to a 64-bit signed integer?
Sign Extension

0 0 1 0
\hspace{2.5cm} 4-bit 2

0 0 0 0 0 0 1 0
\hspace{2.5cm} 8-bit 2

1 1 0 0
\hspace{2.5cm} 4-bit -4

_ _ _ _ 1 1 0 0
\hspace{2.5cm} 8-bit -4
Sign Extension

0 0 1 0 4-bit 2

0 0 0 0 0 0 1 0 8-bit 2

1 1 0 0 4-bit -4

0 0 0 0 1 1 0 0 8-bit 12

Just adding zeroes to the front does not work
Sign Extension

1 0 0 0 0 1 1 0 0

Just making the first bit = 1 also does not work
Sign Extension

0 0 1 0
0 0 0 0 0 0 0 1 0

1 1 0 0
1 1 1 1 1 1 1 0 0

Need to extend the sign bit to all “new” locations
Sign Extension

Task:
- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:
- Make k copies of sign bit:
- $X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0$

![Diagram showing sign extension](image)
Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension (Java too)

```c
short int x = 12345;
int ix = (int) x;
short int y = -12345;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>12345</td>
<td>30 39</td>
<td>00110000 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>12345</td>
<td>00 00 30 39</td>
<td>00000000 00000000 00110000 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-12345</td>
<td>CF C7</td>
<td>11001111 11000111</td>
</tr>
<tr>
<td>iy</td>
<td>-12345</td>
<td>FF FF CF C7</td>
<td>11111111 11111111 11001111 11000111</td>
</tr>
</tbody>
</table>
Shift Operations

- **Left shift: x << n**
 - Shift bit vector x left by n positions
 - Throw away extra bits on left
 - Fill with 0s on right

- **Right shift: x >> n**
 - Shift bit-vector x right by n positions
 - Throw away extra bits on right
 - Logical shift (for unsigned values)
 - Fill with 0s on left
 - Arithmetic shift (for signed values)
 - Replicate most significant bit on left
 - Maintains sign of x
Shift Operations

- **Left shift:** \(x << n \)
 - Shift bit vector \(x \) left by \(n \) positions
 - Throw away extra bits on left
 - Fill with 0s on right

- **Right shift:** \(x >> n \)
 - Shift bit-vector \(x \) right by \(n \) positions
 - Throw away extra bits on right
 - Logical shift (for unsigned values)
 - Fill with 0s on left
 - Arithmetic shift (for signed values)
 - Replicate most significant bit on left
 - Maintains sign of \(x \)

Note

- Shifts by \(n < 0 \) or \(n >= \) size of \(x \) (in bits) are **undefined**
- **In C:** Behavior of >> depends on the compiler!
 - In GCC/Clang: it depends on if \(x \) is signed/unsigned
- **In Java:** >>> is logical shift; >> is arithmetic
What are these computing?

- \(x \gg n \): divide by \(2^n \)

- \(x \ll n \): multiply by \(2^n \)

Shifting is faster than general multiply or divide operations
Shifting and Arithmetic Example #1

General Form:
\[x \ll n \]
\[x \gg n \]

\[x = 27; \]
\[y = x \ll 2; \]
\[y == 108 \]

\[x*2^n \]
logical shift left:
shift in zeros from the right

\[x/2^n \]
logical shift right:
shift in zeros from the left

\[x = 237u; \]
\[y = x \gg 2; \]
\[y == 59 \]
Shifting and Arithmetic Example #2

signed

\[x = -101; \]
\[y = x \ll 2; \]
\[y == 108 \]

\[x = 11111011011 \]

y = x >> 2;
\[y == 1001101100 \]

logical shift left:
shift in zeros from the right

\[x*2^n \]

General Form:
\[x \ll n \]
\[x >> n \]

x/2^n

arithmetic shift right:
shift in copies of most significant bit from the left

\[x = -19; \]
\[y = x >> 2; \]
\[y == -5 \]

Shifts by \(n < 0 \) or \(n \geq \text{size of } x \) are undefined

overflow

signed

\[x = -19; \]
\[y = x >> 2; \]
\[y == -5 \]

rounding (down)
Using Shifts and Masks

- Extract the 2nd most significant byte of an integer?

| x | 01100001 | 01100010 | 01100011 | 01100100 |
Using Shifts and Masks

- Extract the 2nd most significant byte of an integer:
 - First shift, then mask: \((x \gg 16) \& 0xFF\)

<table>
<thead>
<tr>
<th>x</th>
<th>01100001</th>
<th>01100010</th>
<th>01100011</th>
<th>01100100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \gg 16)</td>
<td>00000000</td>
<td>00000000</td>
<td>01100001</td>
<td>01100010</td>
</tr>
<tr>
<td>0xFF</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>11111111</td>
</tr>
<tr>
<td>((x\gg16) & 0xFF)</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>01100010</td>
</tr>
</tbody>
</table>

- Extract the sign bit of a signed integer?
Using Shifts and Masks

- Extract the sign bit of a signed integer:
 - $(x >> 31) & 1$ - need the "& 1" to clear out all other bits except LSB

<table>
<thead>
<tr>
<th>x</th>
<th>11100001 01100010 01100011 01100100</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x >> 31$</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>$(x >> 31) & 0x1$</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>

This picture is assuming arithmetic shifts, but process works in either case.
Using Shifts and Masks

- **Conditionals as Boolean expressions (assuming x is 0 or 1)**
 - In C: if (x) a=y else a=z; which is the same as a = x ? y : z;
 - If x == 1 then a = y, otherwise x == 0 and a = z
 - Can be re-written (assuming arithmetic right shift) as:
 a = (((x << 31) >> 31) & y) | (((!x) << 31) >> 31) & z);

<table>
<thead>
<tr>
<th>x = 1</th>
<th>00000000 00000000 00000000 00000000 00000001</th>
</tr>
</thead>
<tbody>
<tr>
<td>x << 31</td>
<td>10000000 00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>((x << 31) >> 31)</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>y = 257</td>
<td>00000000 00000000 00000001 00000001</td>
</tr>
<tr>
<td>(((x << 31) >> 31) & y)</td>
<td>00000000 00000000 00000001 00000001</td>
</tr>
</tbody>
</table>

If x == 1, then !x == 0 and ((!x) << 31) >> 31) = 00...0, so: (00...0 & z) = 0 and
a = (00000000 00000000 00000001 00000001) | (00...00) (in other words a = y)
If x == 0, then !x == 1 and instead a = z.

One of two sides of the | will always be all zeroes.
Multiplication

- What do you get when you multiply 9 x 9?

- What about $2^{30} \times 3$?

- $2^{30} \times 5$?

- $-2^{31} \times -2^{31}$?
Unsigned Multiplication in C

Operands: w bits

True Product: $2w$ bits

Discard w bits: w bits

- **Standard Multiplication Function**
 - Ignores high order w bits

- **Implements Modular Arithmetic**

 $\text{UMult}_w(u, v) = u \cdot v \mod 2^w$
Multiplication with **shift** and **add**

- **Operation**
 - $u \ll k$ gives $u \times 2^k$
 - Both signed and unsigned

Operands: w bits

True Product: $w+k$ bits

Discard k bits: w bits

- **Examples**
 - $u \ll 3 = u \times 8$
 - $u \ll 5 - u \ll 3 = u \times 24$
 - Most machines shift and add faster than multiply
 - **Compiler generates this code automatically**
Code Security Example

```c
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void* user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}

#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
```
Malicious Usage

```c
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void* user_dest, int maxlen) {
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}
```

```c
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, -MSIZE);
    ...
}
```

- `len` is computed by finding the minimum of the two, which will be `maxlen` if we passed a negative value.
- Because `memcpy` takes an unsigned integer (`size_t`), this allows a malicious caller to read more of the kernel memory than it should.
April 8

Announcements

Lab 1 Prelim due today at 5pm.

Q&A: THE PENTIUM FDIV BUG
(floating point division)

Q: What do you get when you cross a Pentium PC with a research grant?
A: A mad scientist.

Q: Complete the following word analogy:
Add is to Subtract as Multiply is to:
1) Divide
2) ROUND
3) RANDOM
4) On a Pentium, all of the above
A: Number 4.

Q: What algorithm did Intel use in the Pentium's floating point divider?
A: "Life is like a box of chocolates."
(Source: F. Gump of Intel)

Q: According to Intel, the Pentium conforms to the IEEE standards 754 and 854 for floating point arithmetic. If you fly in aircraft designed using a Pentium, what is the correct pronunciation of "IEEE"?
A: Aaaaaaaaaaaaaaaaaaaaaaaaaa!

http://www.smbc-comics.com/?id=2999

Source: http://www.columbia.edu/~sss31/rainbow/pentium.jokes.html
Floating point topics

- Background: fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some “simple fractions” have no exact representation (e.g., 0.2)
 - Can also lose precision, unlike ints
 - “Every operation gets a slightly wrong result”

- Mathematically equivalent ways of writing an expression may compute different results
 - Violates associativity/commutativity/distributivity...

- Never test floating point values for equality!

- Careful when converting between ints and floats!
Fractional Binary Numbers

\[1011.101_2 = \frac{8}{2^3} + \frac{2}{2^2} + \frac{1}{2^1} + \frac{1}{2^0} + \frac{1}{2^{-1}} + \frac{1}{2^{-2}} + \frac{1}{2^{-3}} \]

\[8 + 2 + 1 + \frac{1}{2} + \frac{1}{8} = 11.625_{10} \]
Fractional Binary Numbers

- Representation
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: \[\sum_{k=-j}^{i} b_k \cdot 2^k \]
Fractional Binary Numbers

- Value
 - 5.75
 - 2 and 7/8
 - 47/64

- Binary:
 - 0.1010111_2
Fractional Binary Numbers

- **Value**
 - 5.75 \(101.11_2\)
 - 2 and 7/8 \(10.111_2\)
 - 47/64 \(0.101111_2\)

- **Observations**
 - Shift left = multiply by power of 2
 - Shift right = divide by power of 2
 - Numbers of the form \(0.111111\ldots_2\) are just below 1.0
 - \(1/2 + 1/4 + 1/8 + \ldots + 1/2^i + \ldots \rightarrow 1.0\)
 - Use notation \(1.0 - \epsilon\)
Limits of Representation

Limitations:

- Even given an arbitrary number of bits, can only **exactly** represent numbers of the form $x \times 2^y$ (y can be negative)
- Other rational numbers have repeating bit representations

Value:

- $1/3 = 0.333333..._{10} = 0.01010101[01]..._2$
- $1/5 = 0.2_{10} = 0.001100110011[0011]..._2$
- $1/10 = 0.1_{10} = 0.0001100110011[0011]..._2$
Fixed Point Representation

- **Binary point has a fixed position**
 - Position = number of binary digits before and after

- **Implied binary point. Two example schemes:**
 - #1: the binary point is between bits 2 and 3
 \[b_7 \overline{b_6 \, b_5 \, b_4 \, \underline{\cdot} \, b_2 \, b_1 \, b_0} \]
 - #2: the binary point is between bits 4 and 5
 \[b_7 \overline{b_6 \, b_5 \, \underline{\cdot} \, b_4 \, b_3 \, b_2 \, b_1 \, b_0} \]

- Wherever we put the binary point, with fixed point representations there is a **trade off** between the amount of **range** and **precision**

- **Fixed point = fixed range and fixed precision**
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers

- Hard to pick how much you need of each!

Rarely used in practice. Not built-in.
Floating Point

- **Analogous to scientific notation**
 - **In Decimal:**
 - Not 12000000, but 1.2×10^7 \text{In C:} 1.2e7
 - Not 0.0000012, but 1.2×10^{-6} \text{In C:} 1.2e-6
 - **In Binary:**
 - Not 11000.000, but 1.1×2^4
 - Not 0.000101, but 1.01×2^{-4}

- **We have to divvy up the bits we have (e.g., 32) among:**
 - the sign (1 bit)
 - the significand / mantissa
 - the exponent
IEEE Floating Point

- **IEEE 754**
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs portable
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs
 - Some cheat! (looking at you, GPUs...)

- **Driven by numerical concerns**
 - Scientists/numerical analysts want them to be as **real** as possible
 - Engineers want them to be **easy to implement** and **fast**
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer
Floating Point Representation

- **Numerical form:**
 \[V_{10} = (-1)^s \cdot M \cdot 2^E \]

- Sign bit \(s \) determines whether number is negative or positive
- Significand (mantissa) \(M \) normally a fractional value in range \([1.0, 2.0)\)
- Exponent \(E \) weights value by a (possibly negative) power of two
Floating Point Representation

- **Numerical form:**
 \[V_{10} = (-1)^s \times M \times 2^E \]

 - Sign bit \(s \) determines whether number is negative or positive
 - Significand (mantissa) \(M \) normally a fractional value in range \([1.0, 2.0)\)
 - Exponent \(E \) weights value by a (possibly negative) power of two

- **Representation in memory:**
 - MSB \(s \) is sign bit \(s \)
 - \(\text{exp} \) field encodes \(E \) (but is not equal to \(E \))
 - \(\text{frac} \) field encodes \(M \) (but is not equal to \(M \))
Precisions

- **Single precision: 32 bits**

 - 1 bit for the sign (s)
 - 8 bits for the exponent (exp)
 - 23 bits for the fraction (frac)

- **Double precision: 64 bits**

 - 1 bit for the sign (s)
 - 11 bits for the exponent (exp)
 - 52 bits for the fraction (frac)

- Finite representation means not all values can be represented exactly. Some will be approximated.
Normalization and Special Values

\[V = (-1)^s \times M \times 2^E \]

- “Normalized” = \(M \) has the form 1.xxxxx
 - As in scientific notation, but in binary
 - 0.011 \(\times 2^5 \) and 1.1 \(\times 2^3 \) represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it

- How do we represent 0.0?
 Or special or undefined values like 1.0/0.0?
Normalization and Special Values

\[V = (-1)^S \times M \times 2^E \]

- **“Normalized” =** \(M \) has the form 1.xxxxx
 - As in scientific notation, but in binary
 - 0.011 \(\times 2^5 \) and 1.1 \(\times 2^3 \) represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it.

- **Special values (“denormalized”):**
 - **Zero (0):** \(\exp == 00...0, \frac{\text{frac}}{} == 00...0 \)
 - **\(+\infty, -\infty: \)** \(\exp == 11...1, \frac{\text{frac}}{} == 00...0 \)
 \[
 1.0/0.0 = -1.0/-0.0 = +\infty, \quad 1.0/-0.0 = -1.0/0.0 = -\infty
 \]
 - **\(\text{NaN} \) (“Not a Number”):** \(\exp == 11...1, \frac{\text{frac}}{} != 00...0 \)

 Results from operations with undefined result:

 \(\sqrt{-1}, \infty-\infty, \infty \times 0, \ldots \)

- Note: \(\exp=11...1 \) and \(\exp=00...0 \) are reserved, limiting \(\exp \) range...
Normalized Values

\[V = (-1)^s \times M \times 2^E \]

- **Condition:** \(\exp \neq 000\ldots0 \) and \(\exp \neq 111\ldots1 \)

- **Exponent coded as biased value:** \(E = \exp - \text{Bias} \)
 - \(\exp \) is an *unsigned* value ranging from 1 to \(2^{k-2} \) (\(k = \# \) bits in \(\exp \))
 - \(\text{Bias} = 2^{k-1} - 1 \)
 - Single precision: 127 (so \(\exp : 1\ldots254, E: -126\ldots127 \))
 - Double precision: 1023 (so \(\exp : 1\ldots2046, E: -1022\ldots1023 \))

- These enable negative values for \(E \), for representing very small values
 - Could have encoded with 2’s complement or sign-and-magnitude
 - This just made it easier for HW to do float-exponent operations
Normalized Values

\[
V = (-1)^s \times M \times 2^E
\]

- **Condition:** \(\exp \neq 000...0 \) and \(\exp \neq 111...1 \)

- **Exponent coded as biased value:** \(E = \exp - \text{Bias} \)
 - \(\exp \) is an unsigned value ranging from 1 to \(2^{k-2} \) (\(k = \# \text{ bits in } \exp \))
 - \(\text{Bias} = 2^{k-1} - 1 \)
 - Single precision: 127 (so \(\exp: 1\ldots254, E: -126\ldots127 \))
 - Double precision: 1023 (so \(\exp: 1\ldots2046, E: -1022\ldots1023 \))
 - These enable negative values for \(E \), for representing very small values
 - Could have encoded with 2's complement or sign-and-magnitude
 - This just made it easier for HW to do float-exponent operations

- **Mantissa coded with implied leading 1:** \(M = 1.\text{xxx}...\text{x}_2 \)
 - \(\text{xxx}...\text{x} \): the \(n \) bits of \(\text{frac} \)
 - Minimum when 000...0 \((M = 1.0) \)
 - Maximum when 111...1 \((M = 2.0 - \varepsilon) \)
 - Get extra leading bit for “free”
Normalized Encoding Example

\[V = (-1)^s \times M \times 2^E \]

Value: \(\text{float } f = 12345.0; \)

- \(12345_{10} = 110000000111001_2 \)
 - \(= 1.10000000111001_2 \times 2^{13} \) (normalized form)

Mantissa:

- \(M = 1.10000000111001_2 = 1 + 2^{-1} + 2^{-8} + 2^{-9} + 2^{-10} + 2^{-13} = 1.5069580078125_{10} \)
 - \(\text{frac} = 10000000111001000000000000_2 \)

Exponent: \(E = \text{exp} - \text{Bias} \), so \(\text{exp} = E + \text{Bias} \)

- \(E = 13_{10} \)
- \(\text{Bias} = 127_{10} \)
- \(\text{exp} = 140_{10} = 10001100_2 \)

Result:

\[V = (-1)^s \times M \times 2^E = (-1)^0 \times 1.5069580078125_{10} \times 2^{13}_{10} \]
Distribution of Values

- **6-bit IEEE-like format**
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^3 - 1 - 1 = 3$

- **Notice how the distribution gets denser toward zero.**

![Diagram showing distribution of values with denormalized, normalized, and infinity points.](image-url)
Floating Point Operations

- Unlike the representation for integers, the representation for floating-point numbers is **not exact**
- We have to know how to round from the real value
Floating Point Operations: Basic Idea

\[V = (\pm 1)^s \times M \times 2^E \]

- \[x +_f y = \text{Round}(x + y) \]
- \[x \times_f y = \text{Round}(x \times y) \]

Basic idea for floating point operations:

- First, *compute the exact result*
- Then, *round* the result to make it fit into desired precision:
 - Possibly overflow if exponent too large
 - Possibly drop least-significant bits of mantissa to fit into \(\text{frac} \)
Floating Point Addition

\[(-1)^{s_1} \cdot M_1 \cdot 2^{E_1} + (-1)^{s_2} \cdot M_2 \cdot 2^{E_2} \]

Assume \(E_1 > E_2 \)

Exact Result: \((-1)^{s} \cdot M \cdot 2^{E} \)

- Sign \(s \), mantissa \(M \):
 - Result of signed align & add
- Exponent \(E \): \(E_1 \)

Fixing

- If \(M \geq 2 \), shift \(M \) right, increment \(E \)
- if \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)
- Overflow if \(E \) out of range
- Round \(M \) to fit \(\text{frac} \) precision
Floating Point Multiplication

\[(-1)^{s_1} \times M_1 \times 2^{E_1} \times (-1)^{s_2} \times M_2 \times 2^{E_2} \]

Exact Result: \((-1)^s \times M \times 2^E\)

- **Sign** \(s\): \(s_1 \oplus s_2\)
- **Mantissa** \(M\): \(M_1 \times M_2\)
- **Exponent** \(E\): \(E_1 + E_2\)

Fixing

- If \(M \geq 2\), shift \(M\) right, increment \(E\)
- If \(E\) out of range, overflow
- Round \(M\) to fit frac precision
Rounding modes

Possible rounding modes (illustrated with dollar rounding):

<table>
<thead>
<tr>
<th>Mode</th>
<th>1.40</th>
<th>1.60</th>
<th>1.50</th>
<th>2.50</th>
<th>-1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round-toward-zero</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>-$1</td>
</tr>
<tr>
<td>Round-down (−∞)</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>-$2</td>
</tr>
<tr>
<td>Round-up (+∞)</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$3</td>
<td>-$1</td>
</tr>
<tr>
<td>Round-to-nearest</td>
<td>$1</td>
<td>$2</td>
<td>??</td>
<td>??</td>
<td>??</td>
</tr>
<tr>
<td>Round-to-even</td>
<td>$1</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>-$2</td>
</tr>
</tbody>
</table>

- **Round-to-even** avoids statistical bias in repeated rounding.
 - Rounds up about half the time, down about half the time.
 - Default rounding mode for IEEE floating-point.
Mathematical Properties of FP Operations

- Exponent overflow yields $+\infty$ or $-\infty$

- Floats with value $+\infty$, $-\infty$, and NaN can be used in operations
 - Result usually still $+\infty$, $-\infty$, or NaN; sometimes intuitive, sometimes not

- Floating point ops do not work like real math, due to **rounding**!
 - Not associative: $(3.14 + 1e100) - 1e100 \neq 3.14 + (1e100 - 1e100)$
 - Not distributive: $100 \times (0.1 + 0.2) \neq 100 \times 0.1 + 100 \times 0.2$
 - Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing
Floating Point in C

- **C offers two (well, 3) levels of precision**
 - `float` `1.0f` single precision (32-bit)
 - `double` `1.0` double precision (64-bit)
 - `long double` `1.0L` *(double double, quadruple, or "extended")* precision (64-128 bits)

- `#include <math.h>` *to get INFINITY and NAN constants*

- **Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results**
 - Just avoid them!
Floating Point in C

Conversions between data types:

- Casting between int, float, and double changes the bit representation.
 - `int → float`
 - May be rounded (not enough bits in mantissa: 23)
 - Overflow impossible
 - `int → double` or `float → double`
 - Exact conversion (32-bit ints; 52-bit frac + 1-bit sign)
 - `long → double`
 - Rounded or exact, depending on word size (64-bit → 52 bit mantissa ⇒ round)
 - `double or float → int`
 - Truncates fractional part (rounded toward zero)
 - E.g. 1.999 → 1, -1.99 → -1
 - “Not defined” when out of range or NaN: generally sets to Tmin (even if the value is a very big positive)
Number Representation Really Matters

- **1991:** Patriot missile targeting error
 - clock skew due to conversion from integer to floating point

- **1996:** Ariane 5 rocket exploded ($1 billion)
 - overflow converting 64-bit floating point to 16-bit integer

- **2000:** Y2K problem
 - limited (decimal) representation: overflow, wrap-around

- **2038:** Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to Tmin in 2038

- **other related bugs**
 - 1982: Vancouver Stock Exchange 10% error in less than 2 years
 - 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
 - 1997: USS Yorktown “smart” warship stranded: divide by zero
 - 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
Floating Point and the Programmer

```c
#include <stdio.h>

#include <stdio.h>

int main(int argc, char* argv[]) {

    float f1 = 1.0;
    float f2 = 0.0;
    int i;
    for (i = 0; i < 10; i++) {
        f2 += 1.0/10.0;
    }

    printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
    printf("f1 =\n", f1);
    printf("f2 =\n", f2);

    f1 = 1E30;
    f2 = 1E-30;
    float f3 = f1 + f2;
    printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );

    return 0;
}
```

```
$ ./a.out
0x3f800000  0x3f800001
f1 = 1.000000000
f2 = 1.000000119
f1 == f3? yes
```
Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some “simple fractions” have no exact representation (e.g., 0.2)
 - Can also lose precision, unlike ints
 - “Every operation gets a slightly wrong result”

- Mathematically equivalent ways of writing an expression may compute different results
 - Violates associativity/distributivity

- Never test floating point values for equality!
- Careful when converting between ints and floats!
Many more details for the curious...

- Denormalized values – to get finer precision near zero
- Distribution of representable values
- Floating point multiplication & addition algorithms
- Rounding strategies

- We won’t be using or testing you on any of these extras in 351.
Denormalized Values

- **Condition:** $\text{exp} = 000...0$

- **Exponent value:** $E = \text{exp} - \text{Bias} + 1$ (instead of $E = \text{exp} - \text{Bias}$)

- **Significand coded with implied leading 0:** $M = 0 \cdot \text{xxx}...\text{x_2}$
 - $\text{xxx}...\text{x}$: bits of frac

- **Cases**
 - $\text{exp} = 000...0$, $\text{frac} = 000...0$
 - Represents value 0
 - Note distinct values: +0 and −0 (why?)
 - $\text{exp} = 000...0$, $\text{frac} \neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced
Special Values

- **Condition:** \(\exp = 111...1 \)

- **Case:** \(\exp = 111...1, \frac{}{} = 000...0 \)
 - Represents value \(\infty \) (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., \(1.0/0.0 = -1.0/-0.0 = +\infty \), \(1.0/-0.0 = -1.0/0.0 = -\infty \)

- **Case:** \(\exp = 111...1, \frac{}{} = -000...0 \)
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., \(\sqrt{-1} \), \(\infty - \infty \), \(\infty \cdot 0 \), ...
Visualization: Floating Point Encodings
Tiny Floating Point Example

8-bit Floating Point Representation
- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the \textit{frac}

Same general form as IEEE Format
- normalized, denormalized
- representation of 0, NaN, infinity
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>000</td>
<td>-6</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>001</td>
<td>-6</td>
<td>1/8 * 1/64 = 1/512</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>010</td>
<td>-6</td>
<td>2/8 * 1/64 = 2/512</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>110</td>
<td>-6</td>
<td>6/8 * 1/64 = 6/512</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>111</td>
<td>-6</td>
<td>7/8 * 1/64 = 7/512</td>
</tr>
<tr>
<td>0</td>
<td>0001</td>
<td>000</td>
<td>-6</td>
<td>8/8 * 1/64 = 8/512</td>
</tr>
<tr>
<td>0</td>
<td>0001</td>
<td>001</td>
<td>-6</td>
<td>9/8 * 1/64 = 9/512</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0110</td>
<td>110</td>
<td>-1</td>
<td>14/8 * 1/2 = 14/16</td>
</tr>
<tr>
<td>0</td>
<td>0110</td>
<td>111</td>
<td>-1</td>
<td>15/8 * 1/2 = 15/16</td>
</tr>
<tr>
<td>0</td>
<td>0111</td>
<td>000</td>
<td>0</td>
<td>8/8 * 1 = 1</td>
</tr>
<tr>
<td>0</td>
<td>0111</td>
<td>001</td>
<td>0</td>
<td>9/8 * 1 = 9/8</td>
</tr>
<tr>
<td>0</td>
<td>0111</td>
<td>010</td>
<td>0</td>
<td>10/8 * 1 = 10/8</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1110</td>
<td>110</td>
<td>7</td>
<td>14/8 * 128 = 224</td>
</tr>
<tr>
<td>0</td>
<td>1110</td>
<td>111</td>
<td>7</td>
<td>15/8 * 128 = 240</td>
</tr>
<tr>
<td>0</td>
<td>1111</td>
<td>000</td>
<td>n/a</td>
<td>inf</td>
</tr>
</tbody>
</table>

Denormalized numbers
- **Closest to zero**: 0 0000 000 -6 0
- **Largest denorm**: 0 0000 111 -6 7/8 * 1/64 = 7/512

Normalized numbers
- **Closest to 1 below**: 0 0110 110 -1 14/8 * 1/2 = 14/16
- **Closest to 1 above**: 0 0111 001 0 9/8 * 1 = 9/8
- **Largest norm**: 0 1110 111 7 15/8 * 128 = 240

Denormalized numbers
- **Closest to zero**: 0 0000 000 -6 0
- **Largest denorm**: 0 0000 111 -6 7/8 * 1/64 = 7/512

Normalized numbers
- **Closest to 1 below**: 0 0110 110 -1 14/8 * 1/2 = 14/16
- **Closest to 1 above**: 0 0111 001 0 9/8 * 1 = 9/8
- **Largest norm**: 0 1110 111 7 15/8 * 128 = 240

Denormalized numbers
- **Closest to zero**: 0 0000 000 -6 0
- **Largest denorm**: 0 0000 111 -6 7/8 * 1/64 = 7/512

Normalized numbers
- **Closest to 1 below**: 0 0110 110 -1 14/8 * 1/2 = 14/16
- **Closest to 1 above**: 0 0111 001 0 9/8 * 1 = 9/8
- **Largest norm**: 0 1110 111 7 15/8 * 128 = 240

Denormalized numbers
- **Closest to zero**: 0 0000 000 -6 0
- **Largest denorm**: 0 0000 111 -6 7/8 * 1/64 = 7/512

Normalized numbers
- **Closest to 1 below**: 0 0110 110 -1 14/8 * 1/2 = 14/16
- **Closest to 1 above**: 0 0111 001 0 9/8 * 1 = 9/8
- **Largest norm**: 0 1110 111 7 15/8 * 128 = 240
Distribution of Values

- **6-bit IEEE-like format**
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 23-1-1 = 3

- **Notice how the distribution gets denser toward zero.**
Distribution of Values (close-up view)

- **6-bit IEEE-like format**
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - Bias is 3

Diagram showing the distribution of values with 6-bit IEEE-like format.
Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00...00</td>
<td>00...01</td>
<td>(2^{-{23,52}} \times 2^{-{126,1022}})</td>
</tr>
<tr>
<td>- Single</td>
<td>(\approx 1.4 \times 10^{-45})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Double</td>
<td>(\approx 4.9 \times 10^{-324})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>00...00</td>
<td>11...11</td>
<td>((1.0 - \varepsilon) \times 2^{-{126,1022}})</td>
</tr>
<tr>
<td>- Single</td>
<td>(\approx 1.18 \times 10^{-38})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Double</td>
<td>(\approx 2.2 \times 10^{-308})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smallest Pos. Norm.</td>
<td>00...01</td>
<td>00...00</td>
<td>(1.0 \times 2^{-{126,1022}})</td>
</tr>
<tr>
<td>- Just larger than largest denormalized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
<td>00...00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...10</td>
<td>11...11</td>
<td>((2.0 - \varepsilon) \times 2^{{127,1023}})</td>
</tr>
<tr>
<td>- Single</td>
<td>(\approx 3.4 \times 10^{38})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Double</td>
<td>(\approx 1.8 \times 10^{308})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Special Properties of Encoding

Floating point zero (0^+) exactly the same bits as integer zero
- All bits = 0

Can (Almost) Use Unsigned Integer Comparison
- Must first compare sign bits
- Must consider $0^- = 0^+ = 0$
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity
Floating Point Multiplication

\((-1)^{s_1} M_1 \ 2^{E_1} \times (-1)^{s_2} M_2 \ 2^{E_2}\)

- **Exact Result:** \((-1)^s \ M \ 2^E\)
 - Sign s: \(s_1 ^ \ xor \ s_2\) // xor of s1 and s2
 - Significand M: \(M_1 \times M_2\)
 - Exponent E: \(E_1 + E_2\)

- **Fixing**
 - If \(M \geq 2\), shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision
Floating Point Addition

\[
(-1)^{s_1} M_1 \ 2^{E_1} + (-1)^{s_2} M_2 \ 2^{E_2}
\]

Assume \(E_1 > E_2\)

- **Exact Result:** \((-1)^s M \ 2^E\)
 - **Sign** \(s\), significand \(M\):
 - Result of signed align & add
 - **Exponent** \(E\): \(E_1\)

- **Fixing**
 - If \(M \geq 2\), shift \(M\) right, increment \(E\)
 - If \(M < 1\), shift \(M\) left \(k\) positions, decrement \(E\) by \(k\)
 - Overflow if \(E\) out of range
 - Round \(M\) to fit frac precision
Closer Look at Round-To-Even

■ Default Rounding Mode
 ▪ Hard to get any other kind without dropping into assembly
 ▪ All others are statistically biased
 ▪ Sum of set of positive numbers will consistently be over- or under- estimated

■ Applying to Other Decimal Places / Bit Positions
 ▪ When exactly halfway between two possible values
 ▪ Round so that least significant digit is even
 ▪ E.g., round to nearest hundredth
 1.2349999 1.23 (Less than half way)
 1.2350001 1.24 (Greater than half way)
 1.2350000 1.24 (Half way—round up)
 1.2450000 1.24 (Half way—round down)
Rounding Binary Numbers

- **Binary Fractional Numbers**
 - “Half way” when bits to right of rounding position = $100..._2$

- **Examples**
 - Round to nearest 1/4 (2 bits right of binary point)

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Rounded</th>
<th>Action</th>
<th>Rounded Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/32</td>
<td>10.00011₂</td>
<td>10.00₂</td>
<td>(<1/2—down)</td>
<td>2</td>
</tr>
<tr>
<td>2 3/16</td>
<td>10.00110₂</td>
<td>10.01₂</td>
<td>(>1/2—up)</td>
<td>2 1/4</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.11100₂</td>
<td>11.00₂</td>
<td>(1/2—up)</td>
<td>3</td>
</tr>
<tr>
<td>2 5/8</td>
<td>10.10100₂</td>
<td>10.10₂</td>
<td>(1/2—down)</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>
Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

int x = ...;
float f = ...;
double d = ...;
double d2 = ...;

Assume neither d nor f is NaN

1) x == (int)(float) x
2) x == (int)(double) x
3) f == (float)(double) f
4) d == (double)(float) d
5) f == -(-f);
6) 2/3 == 2/3.0
7) (d+d2)-d == d2