Course Wrap-Up
CSE 351 Autumn 2016

Instructor:
Justin Hsia

Teaching Assistants:
Chris Ma
Hunter Zahn
John Kaltenbach
Kevin Bi
Sachin Mehta
Suraj Bhat
Thomas Neuman
Waylon Huang
Xi Liu
Yufang Sun

https://xkcd.com/894/
Administrivia

❖ Please fill out the course evaluation!
 ▪ Evaluations close this Sunday, December 11th at 11:59pm
 • Not viewable until after grades are submitted
 ▪ 90%+ response rate so much more useful than 60%
 • Have to guess what sampling bias is for “missing 40%”
 ▪ We take these seriously and use them to improve our teaching and this class!

❖ Final Exam: Tue, Dec. 13 @ 12:30pm in Kane 120
 ▪ Review Session: Sun, Dec. 11 @ 1:30pm in EEB 105
 ▪ Cumulative (midterm clobber policy applies)
 ▪ TWO double-sided handwritten 8.5×11” cheat sheets
 • Recommended that you reuse or remake your midterm cheat sheet
Today

- **End-to-end Review**
 - What happens after you write your source code?
 - How code becomes a program (Lecture 28)
 - How your computer executes your code

- **Victory lap and high-level concepts (🔑 points)**
 - More useful for “5 years from now” than “next week’s final”

- **Question time**
C: The Low-Level High-Level Language

- C is a “hands-off” language that “exposes” more of hardware (especially memory)
 - Weakly-typed language that stresses data as bits
 - Anything can be represented with a number!
 - Unconstrained pointers can hold address of *anything*
 - And no bounds checking – buffer overflow possible!
 - Efficient by leaving everything up to the programmer
 - “C is good for two things: being beautiful and creating catastrophic 0days in memory management.”
 (https://medium.com/message/everything-is-broken-81e5f33a24e1)
C Data Types

- C Primitive types
 - Fixed sizes and alignments
 - Characters (char), Integers (short, int, long), Floating Point (float, double)

- C Data Structures
 - Arrays – contiguous chunks of memory
 - Multidimensional arrays = still one continuous chunk, but row-major
 - Multi-level arrays = array of pointers to other arrays
 - Structs – structured group of variables
 - Struct fields are ordered according to declaration order
 - **Internal fragmentation**: space between members to satisfy member alignment requirements (aligned for each primitive element)
 - **External fragmentation**: space after last member to satisfy overall struct alignment requirement (largest primitive member)
C and Memory

- Using C allowed us to examine how we store and access data in memory
 - Endianness *(only applies to memory)*
 - Is the first byte (lowest address) the least significant (little endian) or most significant (big endian) of your data?
 - Array indices and struct fields result in calculating proper addresses to access

- Consequences of your code:
 - Affects performance (locality)
 - Affects security

- But to understand these effects better, we had to dive deeper...
How Code Becomes a Program

- **C source code**: Compiled into Assembly files using the Compiler (``gcc -Og -S``).
- **Assembly files**: Assembled into Object files using the Assembler (``gcc -c`` or `as``).
- **Object files**: Linked into Executable program using the Linker (``gcc`` or `ld``).
- **Executable program**: Loaded by the OS into Hardware.
Instruction Set Architecture

Source code
Different applications or algorithms

Compiler
Perform optimizations, generate instructions

Architecture
Instruction set

Hardware
Different implementations

C Language
Program A

Compiler
GCC

Program B

Your program

Compiler
Clang

Hardware

Intel Pentium 4

Intel Core 2

Intel Core i7

AMD Opteron

AMD Athlon

ARM Cortex-A53

Apple A7

x86-64
CISC

ARMv8
(RArch64/A64)

RISC
Assembly Programmer’s View

- Programmer-visible state
 - PC: the Program Counter (%rip in x86-64)
 - Address of next instruction
 - Named registers
 - Together in “register file”
 - Heavily used program data
 - Condition codes
 - Store status information about most recent arithmetic operation
 - Used for conditional branching

- Memory
 - Byte-addressable array
 - Huge *virtual* address space
 - *Private, all to yourself*...
Program’s View

- CPU
- Registers
- Condition Codes

Memory
- Stack
- Dynamic Data (Heap)
- Static Data
- Literals
- Instructions

- Low addresses 0
- High addresses 2^{N-1}

Local variables; procedure context
Variables allocated with `new` or `malloc`
Static variables (global variables in C)
Large constants (e.g., “example”)
Program’s View

- **Instructions**
 - **Data movement**
 - mov, movz, movz
 - push, pop
 - **Arithmetic**
 - add, sub, imul
 - **Control flow**
 - cmp, test
 - jmp, je, jgt, ...
 - call, ret

- **Operand types**
 - **Literal:** $8
 - **Register:** %rdi, %al
 - **Memory:** \(D(Rb,Ri,S) = D + Rb + Ri*S \)
 - lea: *not a memory access!*

Diagram:
- **Memory**
- **Stack**
- **Dynamic Data (Heap)**
- **Static Data**
- **Literals**
- **Instructions**

- **High addresses** \(2^{N-1} \)
- **Low addresses** \(0 \)

- Local variables; procedure context
- Variables allocated with `new` or `malloc`
- Static variables (global variables in C)
- Large constants (e.g., “example”)**
Program’s View

- **Procedures**
 - Essential abstraction
 - Recursion...

- **Stack discipline**
 - Stack frame per call
 - Local variables

- **Calling convention**
 - How to pass arguments
 - Diane’s Silk Dress Costs $89
 - How to return data
 - Return address
 - Caller-saved / callee-saved registers

Memory

- Stack
- Dynamic Data (Heap)
- Static Data
- Literals
- Instructions

Memory Layout:
- **Low addresses**: 0
- **High addresses**: 2^{N-1}

- Local variables; procedure context
- Variables allocated with `new` or `malloc`
- *static* variables (global variables in C)
- Large constants (e.g., “example”)
Program’s View

- **Heap data**
 - Variable size
 - Variable lifetime

- **Allocator**
 - Balance *throughput* and *memory utilization*
 - Data structures to keep track of free blocks

- **Garbage collection**
 - Must always free memory
 - Garbage collectors help by finding anything *reachable*
 - Failing to free results in *memory leaks*
But remember... it’s all an *illusion!* 😜

- **Context switches**
 - Don’t really have CPU to yourself
- **Virtual Memory**
 - Don’t really have 2^{64} bytes of memory all to yourself
 - Allows for *indirection* (remap physical pages, sharing...)

Diagram:
- **CPU**
 - `%rip`
 - Registers
 - Condition Codes
- **Memory**
 - Stack
 - Dynamic Data (Heap)
 - Static Data
 - Literals
 - Instructions

Notes:
- Context switches:
 - Don’t really have CPU to yourself
- Virtual Memory:
 - Don’t really have 2^{64} bytes of memory all to yourself
 - Allows for *indirection* (remap physical pages, sharing...)
 - Local variables; procedure context
 - Variables allocated with `new` or `malloc`
 - *Static* variables (global variables in C)
 - Large constants (e.g., “example”)
But remember... it’s all an *illusion*! 😐

- **fork**
 - Creates copy of the process
- **execv**
 - Replace with new program
- **wait**
 - Wait for child to die (to *reap* it and prevent *zombies*)
Virtual Memory

Address Translation
- Every memory access must first be converted from virtual to physical
- *Indirection*: just change the address mapping when switching processes
- Luckily, TLB (and page size) makes it pretty fast
But Memory is Also a Lie! 😊

- **Illusion** of one flat array of bytes
 - But *caches* invisibly make accesses to physical addresses faster!

- **Caches**
 - **Associativity** tradeoff with miss rate and access time
 - **Block size** tradeoff with spatial and temporal locality
 - **Cache size** tradeoff with miss rate and cost
Memory Hierarchy

- Registers: <1 ns
- On-chip L1 cache (SRAM): 1 ns
- Off-chip L2 cache (SRAM): 5-10 ns
- Main memory (DRAM): 100 ns
- Local secondary storage (local disks): 150,000 ns
- Remote secondary storage (distributed file systems, web servers): 10,000,000 ns (10 ms)

- Larger, slower, cheaper per byte
- Smaller, faster, costlier per byte

- SSD: 1-2 min
- Disk: 15-30 min
- Remote secondary storage: 1-15 years
- Main memory: 31 days
- Local secondary storage: 66 months = 1.3 years

1-150 ms
Victory Lap

- A victory lap is an extra trip around the track
 - By the exhausted victors (that’s us) 😊

- Review course goals
 - The following slides are copied directly from Lecture 1
 - They should make much more sense now!
Big Theme: Abstractions and Interfaces

- Computing is about abstractions
 - (but we can’t forget reality)
- What are the abstractions that we use?
- What do you need to know about them?
 - When do they break down and you have to peek under the hood?
 - What bugs can they cause and how do you find them?
- How does the hardware relate to the software?
 - Become a better programmer and begin to understand the important concepts that have evolved in building ever more complex computer systems
Little Theme 1: Representation

- All digital systems represent everything as 0s and 1s
 - The 0 and 1 are really two different voltage ranges in the wires
 - Or magnetic positions on a disc, or hole depths on a DVD, or even DNA...
- “Everything” includes:
 - Numbers – integers and floating point
 - Characters – the building blocks of strings
 - Instructions – the directives to the CPU that make up a program
 - Pointers – addresses of data objects stored away in memory
- Encodings are stored throughout a computer system
 - In registers, caches, memories, disks, etc.
- They all need addresses (a way to locate)
 - Find a new place to put a new item
 - Reclaim the place in memory when data no longer needed
Little Theme 2: Translation

- There is a big gap between how we think about programs and data and the 0s and 1s of computers
 - Need languages to describe what we mean
 - These languages need to be translated one level at a time

- We know Java as a programming language
 - Have to work our way down to the 0s and 1s of computers
 - Try not to lose anything in translation!
 - We’ll encounter Java byte-codes, C language, assembly language, and machine code (for the x86 family of CPU architectures)
 - Not in that order, but will all connect by the last lecture!!!
Little Theme 3: Control Flow

- How do computers orchestrate everything they are doing?

 - Within one program:
 - How do we implement if/else, loops, switches?
 - What do we have to keep track of when we call a procedure, and then another, and then another, and so on?
 - How do we know what to do upon “return”?

 - Across programs and operating systems:
 - Multiple user programs
 - Operating system has to orchestrate them all
 - Each gets a share of computing cycles
 - They may need to share system resources (memory, I/O, disks)
 - Yielding and taking control of the processor
 - Voluntary or “by force”?
Course Perspective

- CSE351 will make you a better programmer
 - Purpose is to show how software really works
 - Understanding the underlying system makes you more effective
 - Better debugging
 - Better basis for evaluating performance
 - How multiple activities work in concert (e.g., OS and user programs)
 - Not just a course for hardware enthusiasts!
 - What every CSE major needs to know (plus many more details)
 - See many patterns that come up over and over in computing (like caching)
 - “Stuff everybody learns and uses and forgets not knowing”

- CSE351 presents a world-view that will empower you
 - The intellectual and software tools to understand the trillions+ of 1s and 0s that are “flying around” when your program runs
Can You Now Explain These to a Friend?

- Which of the following did you actually find the most interesting to learn about? (http://PollEv.com/justinh)

 a) What is a GFLOP and why is it used in computer benchmarks?
 b) How and why does running many programs for a long time eat into your memory (RAM)?
 c) What is stack overflow and how does it happen?
 d) Why does your computer slow down when you run out of disk space?
 e) What was the flaw behind the original Internet worm and the Heartbleed bug?
 f) What is the meaning behind the different CPU specifications? (e.g. # of cores, # and size of cache, supported memory types)
The Very First Comic of the Quarter

http://xkcd.com/676/
Courses: What’s Next?

- Staying near the hardware/software interface:
 - EE271/CSE369: Digital Design – basic hardware design using FPGAs
 - EE/CSE474: Embedded Systems – software design for microcontrollers

- Systems software
 - CSE341: Programming Languages
 - CSE332: Data Structures and Parallelism
 - CSE333: Systems Programming – building well-structured systems in C/C++

- Looking ahead
 - CSE401: Compilers (pre-reqs: 332)
 - CSE451: Operating Systems (pre-reqs: 332, 333)
 - CSE461: Networks (pre-reqs: 332, 333)
Acknowledgements

- Many thanks to the people whose course content we are liberally reusing with at most minor changes
 - **CMU**: Randy Bryant, David O’Halloran, Gregory Kesden, Markus Püschel
 - **Harvard**: Matt Welsh (now at Google-Seattle)
 - **UW**: Gaetano Borriello, Luis Ceze, Peter Hornyack, Hal Perkins, Ben Wood, John Zahorjan, Katelin Bailey, Ruth Anderson, Dan Grossman, Brandon Holt
 - **Not listed**: hundreds of TAs
Thanks for a great (first) quarter!

- Huge thanks to your awesome TAs!
 - Chris
 - Hunter
 - John
 - Kevin
 - Sachin
 - Suraj
 - Thomas
 - Waylon
 - Xi
 - Yufang

- Don’t be a stranger!
 - With any luck, I’ll be around for a long time
 - If interested, I’m teaching CSE369 all year
Ask Me Anything
That's all Folks!