Caches III
CSE 351 Autumn 2016

Instructor:
Justin Hsia

Teaching Assistants:
Chris Ma Hunter Zahn John Kaltenbach Kevin Bi
Sachin Mehta Suraj Bhat Thomas Neuman Waylon Huang
Xi Liu Yufang Sun
Administrivia

- Lab 3 due **Friday**
 - 1 late day = Sunday @ 5pm
- No lecture on Friday – Veteran’s Day!
- Midterm Regrades due end of Thursday
Cache Read

1) Locate set
2) Check if any line in set has matching tag
3) Yes + line valid: hit
4) Locate data starting at offset

$N = \text{blocks/lines per set}$

$S = \# \text{sets} = 2^I$

Address of byte in memory:

- T bits: tag
- I bits: set index
- 0 bits: block offset

Valid bit

$K = \text{bytes per block}$
Example: Direct-Mapped Cache ($N = 1$)

Direct-mapped: One line per set
Block Size $K = 8$ B

Address of int:

Find set $S = 2^1$ sets

Block Size $K = 8$ B
Example: Direct-Mapped Cache ($N = 1$)

Direct-mapped: One line per set
Block Size $K = 8$ B

Direct-mapped cache diagram:
- Valid bit
- Match bit: yes = hit
- Address of int: 0...01 100
- Tag: 0 1 2 3 4 5 6 7
- Block offset
Example: Direct-Mapped Cache ($N = 1$)

Direct-mapped: One line per set
Block Size $K = 8$ B

No match? Then old line gets evicted and replaced

This is why we want alignment!
Example: Set-Associative Cache (N = 2)

2-way: Two lines per set
Block Size K = 8 B

Address of short int:

find set
Example: Set-Associative Cache ($N = 2$)

2-way: Two lines per set
Block Size $K = 8$ B

Address of `short int`:

```
| T bits | 0...01 | 100 |
```

Block offset

valid? + match: yes = hit

compare both
Example: Set-Associative Cache \((N = 2)\)

2-way: Two lines per set
Block Size \(K = 8\) B

Address of \texttt{short int}:

No match?
- One line in set is selected for eviction and replacement
- Replacement policies: random, least recently used (LRU), ...

\texttt{short int} (2 B) is here
Types of Cache Misses: 3 C’s!

- **Compulsory** (cold) miss
 - Occurs on first access to a block

- **Conflict** miss
 - Conflict misses occur when the cache is large enough, but multiple data objects all map to the same slot
 - e.g., referencing blocks 0, 8, 0, 8, ... could miss every time
 - Direct-mapped caches have more conflict misses than N-way set-associative (where N > 1)

- **Capacity** miss
 - Occurs when the set of active cache blocks (the \textit{working set}) is larger than the cache (just won’t fit, even if cache was \textit{fully-associative})
 - \textbf{Note:} \textit{Fully-associative} only has Compulsory and Capacity misses
Core i7: Associativity

Processor package

Core 0
- Regs
- L1 d-cache
- L1 i-cache
- L2 unified cache

... (Core 3)
- Regs
- L1 d-cache
- L1 i-cache
- L2 unified cache

L3 unified cache (shared by all cores)

Main memory

Block/line size:
- 64 bytes for all

L1 i-cache and d-cache:
- 32 KiB, 8-way,
 Access: 4 cycles

L2 unified cache:
- 256 KiB, 8-way,
 Access: 11 cycles

L3 unified cache:
- 8 MiB, 16-way,
 Access: 30-40 cycles

slower, but more likely to hit
What about writes?

- Multiple copies of data exist:
 - L1, L2, possibly L3, main memory

- What to do on a write-hit?
 - Write-through: write immediately to memory and all caches in-between
 - Write-back: defer write to memory until line is evicted (replaced)
 - Must track which cache lines have been modified ("dirty bit")

- What to do on a write-miss?
 - Write-allocate: ("fetch on write") load into cache, update line in cache
 - Good if more writes or reads to the location follow
 - No-write-allocate: ("write around") just write immediately to memory

- Typical caches:
 - Write-back + Write-allocate, usually
 - Write-through + No-write-allocate, occasionally
Write-back, write-allocate example

Contents of memory stored at address G

Cache

G 0xBEEF 0

Memory

F 0xCAFE
G 0xBEEF

In this example we are sort of ignoring block offsets. Here a block holds 2 bytes (16 bits, 4 hex digits).

Normally a block would be much bigger and thus there would be multiple items per block. While only one item in that block would be written at a time, the entire line would be brought into cache.
Write-back, write-allocate example

```
mov 0xFACE, F
```

[Diagram showing cache and memory with address 0xBEEF marked as dirty]
Write-back, write-allocate example

mov 0xFACE, F

Step 1: Bring F into cache
Write-back, write-allocate example

```
mov 0xFACE, F
```

Step 2: Write 0xFACE to cache only **and set dirty bit**
Write-back, write-allocate example

```
mov 0xFACE, F  mov 0xFEED, F
```

![Diagram of cache and memory with write-back and write-allocate example]
Write-back, write-allocate example

```
mov 0xFACE, F  
mov 0xFEED, F  
mov G, %rax
```

![Diagram of cache and memory with labels and instructions](image)

Cache
- F: 0xFEED (dirty bit set)
- G: Not modified

Memory
- F: 0xCafe
- G: 0xBEEF

Dirty bit indicated by red arrow.
Write-back, write-allocate example

```
mov 0xFACE, F
mov 0xFEED, F
mov G, %rax
```

1. Write F back to memory since it is dirty
2. Bring G into the cache so we can copy it into %rax
Where else is caching used?

- Software caches are more flexible
 - File system buffer caches, browser caches, etc.
 - Content-delivery networks (CDN): cache for the Internet (e.g. Netflix)

- Some design differences
 - Almost always fully-associative
 - so, no placement restrictions
 - index structures like hash tables are common (for placement)
 - More complex replacement policies
 - misses are very expensive when disk or network involved
 - worth thousands of cycles to avoid them
 - Not necessarily constrained to single “block” transfers
 - may fetch or write-back in larger units, opportunistically
Optimizations for the Memory Hierarchy

- Write code that has locality!
 - **Spatial**: access data contiguously
 - **Temporal**: make sure access to the same data is not too far apart in time

- How can you achieve locality?
 - Adjust memory accesses in *code* (software) to improve miss rate (MR)
 - Requires knowledge of *both* how caches work as well as your system’s parameters
 - Proper choice of algorithm
 - Loop transformations
Example: Matrix Multiplication

\[C_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} \]
Matrices in Memory

How do cache blocks fit into this scheme?

- Row major matrix in memory:

COLUMN of matrix (blue) is spread among cache blocks shown in red
Naïve Matrix Multiply

```c
# move along rows of A
for (i = 0; i < n; i++)
    # move along columns of B
    for (j = 0; j < n; j++)
        # EACH k loop reads row of A, col of B
        # Also read & write c(i,j) n times
        for (k = 0; k < n; k++)
            c[i*n+j] += a[i*n+k] * b[k*n+j];
```

\[
C(i,j) = \begin{array}{c}
\text{C(i,j)}
\end{array} + \begin{array}{c}
\text{A(i,:)}
\end{array} \times \begin{array}{c}
\text{B(:,j)}
\end{array}
\]
Cache Miss Analysis (Naïve)

- **Scenario Parameters:**
 - Square matrix \((n \times n)\), elements are **doubles**
 - Cache block size \(K = 64\ B = 8\) doubles
 - Cache size \(C \ll n\) (much smaller than \(n\))

- **First iteration:**
 \[
 \frac{n}{8} + n = \frac{9n}{8}\ \text{misses}
 \]

- Afterwards **in cache:** (schematic)
Cache Miss Analysis (Naïve)

- **Scenario Parameters:**
 - Square matrix \((n \times n)\), elements are doubles
 - Cache block size \(K = 64\ B = 8\ doubles\)
 - Cache size \(C \ll n\) (much smaller than \(n\))

- **Other iterations:**
 - Again:
 \[
 \frac{n}{8} + n = \frac{9n}{8}\ \text{misses}
 \]

- **Total misses:**
 \[
 \frac{9n}{8} \times n^2 = \frac{9}{8}n^3
 \]
 once per element

Ignoring matrix \(C\)
Linear Algebra to the Rescue (1)

- Can get the same result of a matrix multiplication by splitting the matrices into smaller submatrices (matrix “blocks”)

- For example, multiply two 4×4 matrices:

\[
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\
A_{21} & A_{22} \end{bmatrix}, \text{ with } B \text{ defined similarly.}
\]

\[
AB = \begin{bmatrix}
(A_{11}B_{11} + A_{12}B_{21}) & (A_{11}B_{12} + A_{12}B_{22}) \\
(A_{21}B_{11} + A_{22}B_{21}) & (A_{21}B_{12} + A_{22}B_{22})
\end{bmatrix}
\]
Linear Algebra to the Rescue (2)

Matrices of size $n \times n$, split into 4 blocks of size r ($n=4r$)

\[
C_{22} = A_{21}B_{12} + A_{22}B_{22} + A_{23}B_{32} + A_{24}B_{42} = \sum_k A_{2k} * B_{k2}
\]

- Multiplication operates on small “block” matrices
 - Choose size so that they fit in the cache!
 - This technique called “cache blocking”
Blocked Matrix Multiply

- Blocked version of the naïve algorithm:

```c
# move by rxr BLOCKS now
for (i = 0; i < n; i += r)
  for (j = 0; j < n; j += r)
    for (k = 0; k < n; k += r)
      # block matrix multiplication
      for (ib = i; ib < i+r; ib++)
        for (jb = j; jb < j+r; jb++)
          for (kb = k; kb < k+r; kb++)
            c[ib*n+jb] += a[ib*n+kb]*b[kb*n+jb];
```

- $r =$ block matrix size (assume r divides n evenly)
Cache Miss Analysis (Blocked)

- **Scenario Parameters:**
 - Cache block size $K = 64$ B = 8 doubles
 - Cache size $C \ll n$ (much smaller than n)
 - Three blocks $r \times r$ fit into cache: $3r^2 < C$

- **First (block) iteration:**
 - $r^2/8$ misses per block
 - $2n/r \times r^2/8 = nr/4$

- **Afterwards in cache (schematic)**

Ignoring matrix c
Cache Miss Analysis (Blocked)

- Scenario Parameters:
 - Cache block size $K = 64 \text{ B} = 8$ doubles
 - Cache size $C \ll n$ (much smaller than n)
 - Three blocks $\square (r \times r)$ fit into cache: $3r^2 < C$

- Other (block) iterations:
 - Same as first iteration
 - $2n/r \times r^2/8 = nr/4$

- Total misses:
 - $nr/4 \times (n/r)^2 = n^3/(4r)$
Matrix Multiply Summary

- Naïve: \(\frac{9}{8} \times n^3 \)
- Blocked: \(\frac{1}{4r} \times n^3 \)
 - If \(r = 8 \), difference is \(4 \times 8 \times \frac{9}{8} = 36x \)
 - If \(r = 16 \), difference is \(4 \times 16 \times \frac{9}{8} = 72x \)

- Blocking optimization only works if the blocks fit in the cache
 - Suggests largest possible block size up to limit \(3r^2 \leq C \)

- Matrix multiplication has inherent temporal locality:
 - Input data: \(3n^2 \), computation \(2n^3 \)
 - Every array element used \(O(n) \) times!
 - But program has to be written properly
Matrix Multiply Visualization

- Here $n = 100$, $C = 32$ KiB, $r = 30$

Naïve:

- $\approx 1,020,000$ cache misses

Blocked:

- $\approx 90,000$ cache misses
Cache-Friendly Code

- Programmer can optimize for cache performance
 - How data structures are organized
 - How data are accessed
 - Nested loop structure
 - Blocking is a general technique

- All systems favor “cache-friendly code”
 - Getting absolute optimum performance is very platform specific
 - Cache size, cache block size, associativity, etc.
 - Can get most of the advantage with generic code
 - Keep working set reasonably small (temporal locality)
 - Use small strides (spatial locality)
 - Focus on inner loop code
The Memory Mountain

- Core i7 Haswell
 - 2.1 GHz
 - 32 KB L1 d-cache
 - 256 KB L2 cache
 - 8 MB L3 cache
 - 64 B block size

Aggressive prefetching

Ridges of temporal locality

Slopes of spatial locality
Learning About Your Machine

- **Linux:**
 - `lsccpu`
 - `ls /sys/devices/system/cpu/cpu0/cache/index0/`
 - *Ex:* `cat /sys/devices/system/cpu/cpu0/cache/index*/size`
 - `cat /proc/cpuinfo | grep cache | sort | uniq`

- **Windows:**
 - `wmic memcache get <query>` *(all values in KB)*
 - *Ex:* `wmic memcache get MaxCacheSize`

- **Modern processor specs:** http://www.7-cpu.com/