Floating Point
CSE 351 Autumn 2016

Instructor:
Justin Hsia

Teaching Assistants:
Chris Ma
Hunter Zahn
John Kaltenbach
Kevin Bi
Sachin Mehta
Suraj Bhat
Thomas Neuman
Waylon Huang
Xi Liu
Yufang Sun

http://xkcd.com/899/
Administrivia

- Lab 1 due today at 5pm (prelim) and Friday at 5pm
 - Use Makefile and DLC and GDB to check & debug
- Homework 1 (written problems) released tomorrow
- Piazza
 - Response time from staff members often significantly slower on weekends
 - Would love to see more student participation!
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C

- Consequences of finite width representations
 - Overflow, sign extension

- Shifting and arithmetic operations

- Multiplication
Multiplication

- What do you get when you multiply 9 x 9?
 \[81 \rightarrow \text{need extra digit}\]

- What about \(2^{30} \times 3\)?
 \[\left(2^{11}\right)\]
 \[2^{31} + 2^{30} \rightarrow \text{representable only in unsigned}\]

- \(2^{30} \times 5\)?
 \[\left(2^{11}\right)\]
 \[2^{32} + 2^{30} \rightarrow \text{not representable in 32-bit int}\]

- \(-2^{31} \times -2^{31}\)?
 \[+2^{62} \rightarrow \text{so large!}\]
Unsigned Multiplication in C

Operands: w bits

≈ 2

True Product: $2w$ bits

$u \cdot v$ $u \cdot v$

Discard w bits: w bits

UMult$_w(u, v)$

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic
 - $\text{UMult}_w(u, v) = u \cdot v \mod 2^w$
Multiplication with shift and add

- **Operation** $u << k$ gives $u * 2^k$
 - Both signed and unsigned

<table>
<thead>
<tr>
<th>Operands: w bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
</tr>
<tr>
<td>$u * 2^k$</td>
</tr>
<tr>
<td>$0 \cdots 010 \cdots 00$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>True Product: $w + k$ bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u \cdot 2^k$</td>
</tr>
<tr>
<td>$0 \cdots 010 \cdots 00$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discard k bits: w bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
</tr>
<tr>
<td>$\text{UMult}_w(u, 2^k)$</td>
</tr>
<tr>
<td>$\text{TMult}_w(u, 2^k)$</td>
</tr>
</tbody>
</table>

- **Examples:**
 - $u << 3 = u * 8$
 - $u << 5 - u << 3 = u * 24 = u * (32-8)$

- Most machines shift and add faster than multiply
 - **Compiler generates this code automatically**

 $7 = 4 + 2 + 1$

 $= u << 2 + u << 1 + u$
Number Representation Revisited

- What can we represent in one word?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses

- How do we encode the following:
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10^{23})
 - Very small numbers (e.g. 6.626×10^{-34})
 - Special numbers (e.g. ∞, NaN)
Goals of Floating Point

- Support a wide range of values
 - Both very small and very large
- Keep as much *precision* as possible
- Help programmer with errors in real arithmetic
 - Support +∞, -∞, Not-A-Number (NaN), exponent overflow and underflow
- Keep encoding that is somewhat compatible with two’s complement
Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
Representation of Fractions

- “Binary Point,” like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

```
xx.yyyyy
```

- **Example:** \(10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10}\)

- Binary point numbers that match the 6-bit format above range from 0 (00.0000_2) to 3.9375 (11.1111_2)

\[= 4 - 2^{-4}\]
Scientific Notation (Decimal)

- **Normalized form**: exactly one digit (non-zero) to left of decimal point

- Alternatives to representing 1/1,000,000,000
 - Normalized: \(1.0 \times 10^{-9}\)
 - Not normalized: \(0.1 \times 10^{-8}, 10.0 \times 10^{-10}\)
Scientific Notation (Binary)

- Computer arithmetic that supports this called **floating point** due to the “floating” of the binary point
 - Declare such variable in C as `float`
Scientific Notation Translation

Consider the number $1.011_2 \times 2^4$

- To convert to ordinary number, shift the decimal to the right by 4
 - Result: $10110_2 = 22_{10}$

- For negative exponents, shift decimal to the left
 - $1.011_2 \times 2^{-2} \Rightarrow 0.01011_2 = 0.34375_{10}$

- Go from ordinary number to scientific notation by shifting until in *normalized* form
 - $1101.001_2 \rightarrow 1.101001_2 \times 2^3$

Practice: Convert 11.375_{10} to binary scientific notation

$$8 + 2 + 1 + 0.25 + 0.125$$

$$2^3 + 2^1 + 2^0 + 2^{-2} + 2^{-3} = 1011.01_2 = \boxed{1.01101 \times 2^3}$$

Practice: Convert $1/5$ to binary

$$0.2 \quad \frac{1}{5} - \frac{1}{8} = \frac{3}{40}, \quad \frac{3}{40} - \frac{1}{16} = \frac{1}{80} = \frac{1}{5} \left(\frac{1}{16} \right)$$

$$\boxed{0.0011_2}$$
IEEE Floating Point

- IEEE 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs portable
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs

- Driven by numerical concerns
 - **Scientists*/numerical analysts want them to be as real as possible
 - **Engineers** want them to be easy to implement and fast
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops
Floating Point Encoding

- Use normalized, base 2 scientific notation:
 - Value: $\pm 1 \times \text{Mantissa} \times 2^{\text{Exponent}}$
 - Bit Fields: $(-1)^S \times 1.M \times 2^{(E+bias)}$

- Representation Scheme:
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E
The Exponent Field

- **Use** biased notation
 - Read exponent as unsigned, but with *bias of* $-\left(2^{w-1}-1\right) = -127$
 - Representable exponents roughly $\frac{1}{2}$ positive and $\frac{1}{2}$ negative
 - Exponent 0 ($\text{Exp} = 0$) is represented as $E = 0b\ 0111\ 1111$

- **Why biased?**
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two’s complement

- **Practice:** To encode in biased notation, subtract the bias (add 127) then encode in unsigned:
 - $\text{Exp} = 1 \quad \rightarrow \quad 128 \quad \rightarrow \quad E = 0b\ 1000\ 0000$
 - $\text{Exp} = 127 \rightarrow 254 \quad \rightarrow \quad E = 0b\ 1111\ 1110$
 - $\text{Exp} = -63 \rightarrow 64 \quad \rightarrow \quad E = 0b\ 0100\ 0000$

Note: These 8 bits go in the 32-bit floating point encoding
The Mantissa Field

(-1)^S \times (1 \cdot M) \times 2^{(E+\text{bias})}

- Note the implicit 1 in front of the M bit vector
 - Example: 0b 0011 1111 1100 0000 0000 0000 0000 is read as 1.1_2 = 1.5_{10}, not 0.1_2 = 0.5_{10}
 - Gives us an extra bit of precision

- Mantissa “limits”
 - Low values near M = 0b0...0 are close to 2^{Exp}
 - High values near M = 0b1...1 are close to 2^{Exp+1}
Precision and Accuracy

- **Precision** is a count of the number of bits in a computer word used to represent a value
 - Capability for accuracy
- **Accuracy** is a measure of the difference between the *actual value of a number* and its computer representation
 - *High precision permits high accuracy but doesn’t guarantee it. It is possible to have high precision but low accuracy.*
 - **Example:** `float pi = 3.14;`
 - `pi` will be represented using all 24 bits of the significand (highly precise), but is only an approximation (not accurate)
Need Greater Precision?

- **Double Precision** (vs. Single Precision) in 64 bits

- **C variable declared as** `double`
- **Exponent bias is now** \(-(2^{10} - 1) = -1023\)
- **Advantages:** greater precision (larger mantissa), greater range (larger exponent)
- **Disadvantages:** more bits used, slower to manipulate
Representing Very Small Numbers

- But wait... what happened to zero?
 - Using standard encoding $0x00000000 = +1.0 \times 2^{-127} = 2^{-127} \neq 0$
 - *Special case:* E and M all zeros = 0
 - Two zeros! But at least $0x00000000 = 0$ like integers

- New numbers closest to 0:
 - $a = 1.0...0_2 \times 2^{-126} = 2^{-126}$
 - $b = 1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$
 - Normalization and implicit 1 are to blame
 - *Special case:* E = 0, M ≠ 0 are denormalized numbers
Denorm Numbers

- Denormalized numbers
 - No leading 1
 - Careful! Implicit exponent is -126 (not -127) even though $E = 0x00 \Rightarrow$ normally $2^{0-127} = 2^{-127}$, but instead using 2^{-126}

- Now what do the gaps look like?
 - Smallest norm: $\pm 1.0...0_{\text{two}} \times 2^{-126} = \pm 2^{-126}$
 - Largest denorm: $\pm 0.1...1_{\text{two}} \times 2^{-126} = \pm (2^{-126} - 2^{-149})$
 - Smallest denorm: $\pm 0.0...01_{\text{two}} \times 2^{-126} = \pm 2^{-149}$

Currently $c - a = 2^{-149}$

if we had used denorm exponent of 2^{-127},
then $\overline{c} = 2^{-127} - 2^{-150}$
and $\overline{c} - a = 2^{-126} - 2^{-127} + 2^{-150}$, so larger gap between \overline{c} & a.
Other Special Cases

- \(E = 0xFF, M = 0 \): \(\pm \infty \)
 - e.g., division by 0
 - Still work in comparisons!

- \(E = 0xFF, M \neq 0 \): Not a Number (NaN)
 - e.g., square root of negative number, 0/0, \(\infty-\infty \)
 - NaN propagates through computations
 - Value of \(M \) can be useful in debugging

- Largest value (besides \(\infty \))?
 - \(E = 0xFF \) has now been taken!
 - \(E = 0xFE \) has largest:
 \[
 \exp = 2^{254-127} = 127 \\
 1.1...1_2 \times 2^{127} = 2^{128} - 2^{104}
 \]
Floating Point Encoding Summary

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Mantissa</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>± 0</td>
</tr>
<tr>
<td>0x00</td>
<td>non-zero</td>
<td>± denorm num</td>
</tr>
<tr>
<td>0x01 – 0xFE</td>
<td>anything</td>
<td>± norm num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>± ∞</td>
</tr>
<tr>
<td>0xFF</td>
<td>non-zero</td>
<td>NaN</td>
</tr>
</tbody>
</table>
Distribution of Values

- What ranges are NOT representable?
 - Between largest norm and infinity: Overflow
 - Between zero and smallest denorm: Underflow
 - Between norm numbers?

- Given a FP number, what’s the bit pattern of the next largest representable number?
 - What is this “step” when Exp = 0?
 - What is this “step” when Exp = 100?

- Distribution of values is denser toward zero

![Distribution of Values Diagram](image-url)
Peer Instruction Question

Let \(FP[1,2) \) = # of representable floats between 1 and 2
Let \(FP[2,3) \) = # of representable floats between 2 and 3

Which of the following statements is true?

- Extra: what are the actual values of \(FP[1,2) \) and \(FP[2,3) \)?
 - Hint: Encode 1, 2, 3 into floating point

- (A) \(FP[1,2) > FP[2,3) \)
- (B) \(FP[1,2) == FP[2,3) \)
- (C) \(FP[1,2) < FP[2,3) \)
- (D) It depends

\[FP[1,2) = 2^{23} \text{ (can toggle all bits of mantissa)} \]
\[FP[2,3) = 2^{22} \text{ (can toggle all but most significant bit of mantissa)} \]
Floating Point Operations: Basic Idea

Value = \((-1)^S \times \text{Mantissa} \times 2^\text{Exponent}\)

- \(x +_f y = \text{Round}(x + y)\)
- \(x \times_f y = \text{Round}(x \times y)\)

Basic idea for floating point operations:
- First, compute the exact result
- Then round the result to make it fit into desired precision:
 - Possibly over/underflow if exponent outside of range
 - Possibly drop least-significant bits of mantissa to fit into M bit vector
Floating Point Addition

\((-1)^{S_1} \times \text{Man}_1 \times 2^{\text{Exp}_1} + (-1)^{S_2} \times \text{Man}_2 \times 2^{\text{Exp}_2}\)

- Assume \(\text{E}_1 > \text{E}_2\)

- Exact Result: \((-1)^{S} \times \text{Man} \times 2^{\text{Exp}}\)
 - Sign \(S\), mantissa \(\text{Man}\):
 - Result of signed align & add
 - Exponent \(E\): \(E_1\)

- Adjustments:
 - If \(\text{Man} \geq 2\), shift \(\text{Man}\) right, increment \(E\)
 - if \(\text{Man} < 1\), shift \(\text{Man}\) left \(k\) positions, decrement \(E\) by \(k\)
 - Over/underflow if \(E\) out of range
 - Round \(\text{Man}\) to fit mantissa precision

Line up the binary points

\[\begin{array}{c}
1.010 \times 2^2 \\
+ 1.000 \times 2^{-1} \\
?\end{array} \rightarrow + \begin{array}{c}
1.0100 \times 2^2 \\
0.0001 \times 2^2 \\
1.0101 \times 2^2\end{array}\]
Floating Point Multiplication

\[(-1)^{S_1} \times M_1 \times 2^{E_1} \times (-1)^{S_2} \times M_2 \times 2^{E_2} \]

Exact Result: \[(-1)^{S} \times M \times 2^{E} \]

- Sign \(S \): \(s_1 \wedge s_2 \)
- Mantissa \(\text{Man} \): \(M_1 \times M_2 \)
- Exponent \(E \): \(E_1 + E_2 \)

Adjustments:
- If \(\text{Man} \geq 2 \), shift \(\text{Man} \) right, increment \(E \)
- Over/underflow if \(E \) out of range
- Round \(\text{Man} \) to fit mantissa precision
Summary

Floating point approximates real numbers:

- Handles large numbers, small numbers, special numbers
- Exponent in biased notation (bias = \(-(2^{w-1}-1)\))
 - Outside of representable exponents is overflow and underflow
- Mantissa approximates fractional portion of binary point
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes rounding

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Mantissa</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>± 0</td>
</tr>
<tr>
<td>0x00</td>
<td>non-zero</td>
<td>± denorm num</td>
</tr>
<tr>
<td>0x01 – 0xFE</td>
<td>anything</td>
<td>± norm num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>± ∞</td>
</tr>
<tr>
<td>0xFF</td>
<td>non-zero</td>
<td>NaN</td>
</tr>
</tbody>
</table>
More details for the curious. These slides expand on material covered today, so while you don’t need to read these, the information is “fair game.”

- Tiny Floating Point Example
- Distribution of Values
Visualization: Floating Point Encodings

-\infty\quad -\text{Normalized}\quad -\text{Denorm}\quad +\text{Denorm}\quad +\text{Normalized}\quad +\infty

-0\quad +0

NaN\quad NaN
Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit.
 - the next four bits are the exponent, with a bias of 7.
 - the last three bits are the frac

- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>Exp</th>
<th>Frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 000</td>
<td>-6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0000 001</td>
<td>-6</td>
<td>1/8*1/64 = 1/512</td>
<td>closest to zero</td>
</tr>
<tr>
<td>0000 010</td>
<td>-6</td>
<td>2/8*1/64 = 2/512</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>-6</td>
<td>6/8*1/64 = 6/512</td>
<td>largest denorm</td>
</tr>
<tr>
<td>0000 110</td>
<td>-6</td>
<td>7/8*1/64 = 7/512</td>
<td></td>
</tr>
<tr>
<td>0000 111</td>
<td>-6</td>
<td>n/a inf</td>
<td></td>
</tr>
</tbody>
</table>

Denormalized numbers

Normalized numbers

<table>
<thead>
<tr>
<th>Exp</th>
<th>Frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001 000</td>
<td>-6</td>
<td>8/8*1/64 = 8/512</td>
<td>smallest norm</td>
</tr>
<tr>
<td>0001 001</td>
<td>-6</td>
<td>9/8*1/64 = 9/512</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>-1</td>
<td>14/8*1/2 = 14/16</td>
<td>closest to 1 below</td>
</tr>
<tr>
<td>0110 110</td>
<td>-1</td>
<td>15/8*1/2 = 15/16</td>
<td></td>
</tr>
<tr>
<td>0110 111</td>
<td>-1</td>
<td>8/8*1 = 1</td>
<td>closest to 1 above</td>
</tr>
<tr>
<td>0111 000</td>
<td>0</td>
<td>9/8*1 = 9/8</td>
<td></td>
</tr>
<tr>
<td>0111 001</td>
<td>0</td>
<td>10/8*1 = 10/8</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>7</td>
<td>14/8*128 = 224</td>
<td>largest norm</td>
</tr>
<tr>
<td>0110 110</td>
<td>7</td>
<td>15/8*128 = 240</td>
<td></td>
</tr>
<tr>
<td>0111 000</td>
<td>n/a</td>
<td>inf</td>
<td></td>
</tr>
</tbody>
</table>
Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 2^3 - 1 - 1 = 3

- Notice how the distribution gets denser toward zero.
Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3
Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00...00</td>
<td>00...01</td>
<td>$2^{-23,52} \times 2^{-126,1022}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single $\approx 1.4 \times 10^{-45}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double $\approx 4.9 \times 10^{-324}$</td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>00...00</td>
<td>11...11</td>
<td>$(1.0 - \varepsilon) \times 2^{-126,1022}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single $\approx 1.18 \times 10^{-38}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double $\approx 2.2 \times 10^{-308}$</td>
</tr>
<tr>
<td>Smallest Pos. Norm.</td>
<td>00...01</td>
<td>00...00</td>
<td>$1.0 \times 2^{-126,1022}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Just larger than largest denormalized</td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
<td>00...00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...10</td>
<td>11...11</td>
<td>$(2.0 - \varepsilon) \times 2^{127,1023}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single $\approx 3.4 \times 10^{38}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double $\approx 1.8 \times 10^{308}$</td>
</tr>
</tbody>
</table>
Special Properties of Encoding

- Floating point zero (0^+) exactly the same bits as integer zero
 - All bits = 0

- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^- = 0^+ = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity