Integers II
CSE 351 Autumn 2016

Instructor:
Justin Hsia

Teaching Assistants:
Chris Ma
Hunter Zahn
John Kaltenbach
Kevin Bi
Sachin Mehta
Suraj Bhat
Thomas Neuman
Waylon Huang
Xi Liu
Yufang Sun

http://xkcd.com/571/
Administrivia

- Lab 1 due next Friday (10/14)
 - Partial due on Monday (10/10)
- Homework 1 will be released on Tuesday (10/11)
 - Timing overlaps a bit with Lab 1
- No Panopto for this course
 - Online lecture videos from 2013 at:
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C

- Consequences of finite width representations
 - Overflow, sign extension

- Shifting and arithmetic operations
Unsigned vs. Two’s Complement

- 4-bit Example:
 - Unsigned: $1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$
 - Two’s Complement: $1 \times (-2^3) + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$

- (math) difference = 16 = 2^4

- Two’s Complement
 - $0 \rightarrow +1$
 - $1 \rightarrow +2$
 - $-2 \rightarrow +3$
 - $-3 \rightarrow +4$
 - $-4 \rightarrow +5$
 - $-5 \rightarrow +6$

- Unsigned
 - $0 \rightarrow +1$
 - $1 \rightarrow +2$
 - $2 \rightarrow +3$
 - $3 \rightarrow +4$
 - $4 \rightarrow +5$
 - $5 \rightarrow +6$

- 4-bit Example:
 - 1011

- 1011

- 11

- 11

- -5
Unsigned vs. Two’s Complement

- 4-bit Example:

Unsigned: $1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$

Two’s Complement: $1 \times (-2^3) + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$

(math) difference = $16 = 2^4$
Two’s Complement Arithmetic

- The same addition procedure works for both unsigned and two’s complement integers
 - **Simplifies hardware:** only one algorithm for addition
 - **Algorithm:** simple addition, **discard the highest carry bit**
 - Called modular addition: result is sum \(\text{modulo } 2^w \)

- 4-bit Examples:

<table>
<thead>
<tr>
<th></th>
<th>0100</th>
<th>1100</th>
<th>0100</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>+3</td>
<td>+3</td>
<td>+3</td>
</tr>
<tr>
<td></td>
<td>0111</td>
<td>0011</td>
<td>1101</td>
</tr>
<tr>
<td>+3</td>
<td>+0011</td>
<td>+0011</td>
<td>+1101</td>
</tr>
<tr>
<td>=7</td>
<td>=0111</td>
<td>=1111</td>
<td>=1</td>
</tr>
<tr>
<td></td>
<td>=0101</td>
<td>=10011</td>
<td>=0001</td>
</tr>
</tbody>
</table>
Why Does Two’s Complement Work?

- For all representable positive integers x, we want:

 \[
 \text{bit representation of } x + \text{bit representation of } -x = \text{bit representation of } -x
 \]

- What are the 8-bit negative encodings for the following?

 \[
 \begin{array}{c}
 00000001 + \text{????????} = \text{????????} \\
 00000010 + \text{????????} = \text{????????} \\
 11000011 + \text{????????} = \text{????????}
 \end{array}
 \]
Why Does Two’s Complement Work?

- For all representable positive integers x, we want:
 \[
 \text{bit representation of } x + \text{bit representation of } -x \equiv 0
 \]
 (ignoring the carry-out bit)

- What are the 8-bit negative encodings for the following?

 \[
 \begin{align*}
 00000001 & \quad 00000010 & \quad 11000011 \\
 + 11111111 & + 11111110 & + 00111101 \\
 100000000 & + 100000000 & + 100000000
 \end{align*}
 \]

 These are the bitwise complement plus 1!

 \[-x \equiv \sim x + 1\]
Signed/Unsigned Conversion Visualized

- Two’s Complement → Unsigned
 - Ordering Inversion
 - Negative → Big Positive

Diagram:
- Signed Range
 - 2’s Complement
 - TMin: -2
 - Tmax: 0
- Unsigned Range
 - UMax: 9
 - UMax - 1
 - Tmax + 1
 - Order inversion

Legend:
- Signed
- Unsigned
- Signed/Unsigned Conversion
- Ordering Inversion
- Negative → Big Positive
Values To Remember

- **Unsigned Values**
 - \(\text{UMin} = 0b00...0 = 0 \)
 - \(\text{UMax} = 0b11...1 = 2^w - 1 \)

- **Two’s Complement Values**
 - \(\text{TMin} = 0b10...0 = -2^{w-1} \)
 - \(\text{TMax} = 0b01...1 = 2^{w-1} - 1 \)
 - \(-1 = 0b11...1\)

- **Example: Values for \(w = 32 \)**

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>FF FF FF FF FF</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>TMax</td>
<td>7F FF FF FF</td>
<td>01111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>80 00 00 00</td>
<td>10000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>00 00 00 00</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>
In C: Signed vs. Unsigned

- **Casting**
 - Bits are unchanged, just interpreted differently!
 - int tx, ty;
 - unsigned ux, uy;
 - *Explicit* casting
 - tx = (int) ux;
 - uy = (unsigned) ty;
 - *Implicit* casting can occur during assignments or function calls
 - tx = ux;
 - uy = ty;
 - gcc flag `-Wsign-conversion` produces warnings for implicit casts, but `-Wall` does not
Casting Surprises

- **Integer literals (constants)**
 - By default, integer constants are considered *signed* integers
 - Hex constants already have an explicit binary representation
 - Use "U" (or "u") suffix to explicitly force *unsigned*
 - **Examples:** 0U, 4294967259u

- **Expression Evaluation**
 - When you mixed unsigned and signed in a single expression, then *signed values are implicitly cast to unsigned*
 - Including comparison operators <, >, ==, <=, >=
Casting Surprises

- **32-bit examples:**
 - TMin = -2,147,483,648, TMax = 2,147,483,647

<table>
<thead>
<tr>
<th>Left Constant</th>
<th>Op</th>
<th>Right Constant</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>==</td>
<td>0U</td>
<td>Unsigned</td>
</tr>
<tr>
<td>-1</td>
<td><</td>
<td>0</td>
<td>Signed</td>
</tr>
<tr>
<td>-1</td>
<td>></td>
<td>0U</td>
<td>Unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>></td>
<td>-2147483648</td>
<td>Signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td><</td>
<td>-2147483648</td>
<td>Unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>></td>
<td>-2</td>
<td>Signed</td>
</tr>
<tr>
<td>(unsigned) -1</td>
<td>></td>
<td>-2</td>
<td>Unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td><</td>
<td>2147483648U</td>
<td>Unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>></td>
<td>*(int) 2147483648U</td>
<td>Signed</td>
</tr>
</tbody>
</table>
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C

- Consequences of finite width representations
 - Overflow, sign extension

- Shifting and arithmetic operations
Arithmetic Overflow

- When a calculation produces a result that can’t be represented in the current encoding scheme
 - Integer range limited by fixed width
 - Can occur in both the positive and negative directions

- Computer handling of overflow
 - CPU *may be* capable of “throwing an exception” for overflow on *signed* values
 - CPU doesn’t throw exception for *unsigned*
 - C and Java ignore overflow exceptions... oops!
Overflow: Unsigned

- **Addition**: drop carry bit (-2^N)

\[
\begin{array}{c}
15 \\
+ 2 \\
\hline
17
\end{array}
\quad
\begin{array}{c}
1111 \\
+ 0010 \\
\hline
10001
\end{array}
\quad
1

- **Subtraction**: borrow ($+2^N$)

\[
\begin{array}{c}
1 \\
- 2 \\
\hline
-1
\end{array}
\quad
\begin{array}{c}
10001 \\
- 0010 \\
\hline
1111
\end{array}
\quad
15
\]

$\pm 2^N$ because of modular arithmetic
Overflow: Two’s Complement

- **Addition:** \((+) + (+) = (-)\) result?

\[
\begin{array}{ccc}
6 & 0110 \\
+ 3 & + 0011 \\
\hline
9 & 1001 \\
\end{array}
\]

\(-7\)

- **Subtraction:** \((-) + (-) = (+)\)?

\[
\begin{array}{ccc}
-7 & 1001 \\
- 3 & - 0011 \\
\hline
-10 & 0110 \\
\end{array}
\]

\(6\)

For signed: overflow if operands have same sign and result’s sign is different
Sign Extension

- What happens if you convert a *signed* integral data type to a larger one?
 - e.g., `char` → `short` → `int` → `long`

- **4-bit → 8-bit Example:**
 - Positive Case
 - 4-bit: 0010 = +2
 - 8-bit: 00000010 = +2
Sign Extension

- What happens if you convert a *signed* integral data type to a larger one?
 - e.g., `char` → `short` → `int` → `long`

4-bit → 8-bit Example:

- **Positive Case**
 - Add 0’s?
 - 4-bit: `0010` = +2
 - 8-bit: `00000010` = +2

- **Negative Case**
 - Add 0’s?
 - 4-bit: `1100` = -4
 - 8-bit: `00001100` = +12
 - Make MSB 1?
 - 4-bit: `1100` = -4
 - 8-bit: `11111100` = -116
 - Add 1’s?
 - 4-bit: `1100` = -4
 - 8-bit: `11111100` = -4
Sign Extension

- **Task:** Given a \(w \)-bit signed integer \(X \), convert it to \(w+k \)-bit signed integer \(X' \) *with the same value*

- **Rule:** Add \(k \) copies of sign bit
 - Let \(x_i \) be the \(i \)-th digit of \(X \) in binary
 - \(X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_1, x_0 \)
Sign Extension Example

- Convert from smaller to larger integral data types
- C automatically performs sign extension
 - Java too

```
short int x =  12345;
int    ix = (int) x;
short int y = -12345;
int    iy = (int) y;
```

<table>
<thead>
<tr>
<th>Var</th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>12345</td>
<td>30 39</td>
<td>00110000 00111001</td>
</tr>
<tr>
<td>ix</td>
<td>12345</td>
<td>00 00 30 39</td>
<td>00000000 00000000 00110000 00111001</td>
</tr>
<tr>
<td>y</td>
<td>-12345</td>
<td>CF C7</td>
<td>11001111 11000111</td>
</tr>
<tr>
<td>iy</td>
<td>-12345</td>
<td>FF FF CF C7</td>
<td>11111111 11111111 11001111 11000111</td>
</tr>
</tbody>
</table>
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representations
 - Overflow, sign extension
- Shifting and arithmetic operations
Shift Operations

- **Left shift** ($x << n$) bit vector x by n positions
 - Throw away (drop) extra bits on left
 - Fill with 0s on right

- **Right shift** ($x >> n$) bit-vector x by n positions
 - Throw away (drop) extra bits on right
 - Logical shift (for **unsigned** values)
 - Fill with 0s on left
 - Arithmetic shift (for **signed** values)
 - Replicate most significant bit on left
 - Maintains sign of x
Shift Operations

- **Left shift** \((x << n)\)
 - Fill with 0s on right

- **Right shift** \((x >> n)\)
 - **Logical shift** (for *unsigned* values)
 - Fill with 0s on left
 - **Arithmetic shift** (for *signed* values)
 - Replicate most significant bit on left

Notes:
- Shifts by \(n < 0\) or \(n \geq W\) (bit width of \(x\)) are *undefined*
- **In C**: behavior of \(>>\) is determined by compiler
 - In gcc / C lang, depends on data type of \(x\) (signed/unsigned)
- **In Java**: logical shift is \(>>\)\(3\) and arithmetic shift is \(>>\)\(2\)
Shifting Arithmetic?

- What are the following computing?
 - x\(\gg n\):
 - \(0b\ 0100 \gg 1 = 0b\ 0010\)
 - \(0b\ 0100 \gg 2 = 0b\ 0001\)
 - Divide by \(2^n\)
 - x\(\ll n\):
 - \(0b\ 0001 \ll 1 = 0b\ 0010\)
 - \(0b\ 0001 \ll 2 = 0b\ 0100\)
 - Multiply by \(2^n\)

- Shifting is faster than general multiply and divide operations
Left Shifting Arithmetic 8-bit Example

- No difference in left shift operation for unsigned and signed numbers (just manipulates bits)
 - Difference comes during interpretation: $x \times 2^n$?

$x = 25; \quad 00011001 = \quad 25 \quad 25$

$L1=x<<2; \quad 0001100100 = \quad 100 \quad 100$

$L2=x<<3; \quad 00011001000 = \quad -56 \quad 200$

$L3=x<<4; \quad 000110010000 = \quad -112 \quad 144$

Signed overflow

Unsigned overflow
Right Shifting Arithmetic 8-bit Examples

Reminder: C operator `>>` does *logical* shift on *unsigned* values and *arithmetic* shift on *signed* values

- **Logical Shift:** $x / 2^n$

 - **Unsigned**
 - $x_u = 240u; \quad 11110000 = 240$
 - $R1_u = x_u >> 3; \quad 00011110000 = 30$
 - $240 / 2^3 = 30$
 - $R2_u = x_u >> 5; \quad 0000011110000 = 7$
 - $240 / 2^5 = 7.5$
 - rounding (down)
Right Shifting Arithmetic 8-bit Examples

Reminder: C operator `>>` does *logical* shift on unsigned values and *arithmetic* shift on signed values

- **Arithmetic Shift:** \(x / 2^n \)?

\[\text{xs} = -16; \quad 11110000 = -16\]

\[\text{R1s=xu} >> 3; \quad 111111110000 = -2\]

\(-16/2^3 = -2\)

\[\text{R2s=xu} >> 5; \quad 11111111110000 = -1\]

\(-16/2^5 = -0.5\)

rounding (down)
Peer Instruction Question

For the following expressions, find a value of char \(x \), if there exists one, that makes the expression \(\text{TRUE} \). Compare with your neighbor(s)!

- Assume we are using 8-bit arithmetic:
 - \(x \equiv (\text{unsigned char}) x \)
 - \(x \geq 128U \)
 - \(x \neq (x >> 2) \ll 2 \)
 - \(x == -x \)
 - Hint: there are two solutions
 - \((x < 128U) \&\& (x > 0x3F) \)
Using Shifts and Masks

- Extract the 2nd most significant \textit{byte} of an \textit{int}:
 - First shift, then mask: \((x\gg 16) \& 0xFF\)

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
x & 00000001 & 00000010 & 00000011 & 00000100 \\
\hline
x\gg 16 & 00000000 & 00000000 & 00000001 & 00000010 \\
\hline
0xFF & 00000000 & 00000000 & 00000000 & 11111111 \\
\hline
(x\gg 16) \& 0xFF & 00000000 & 00000000 & 00000000 & 00000010 \\
\hline
\end{array}
\]

Could also mask then shift in this case \(\rightarrow\) what could new mask be?
Using Shifts and Masks

- Extract the *sign bit* of a signed `int`:
 - First shift, then mask: \((x\gg 31) \& 0x1\)
 - Assuming arithmetic shift here, but works in either case
 - Need mask to clear 1s possibly shifted in

<table>
<thead>
<tr>
<th>(x)</th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x\gg 31)</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>(0x1)</td>
<td>00000000 00000000 00000000 00000001</td>
</tr>
<tr>
<td>((x\gg 31) & 0x1)</td>
<td>00000000 00000000 00000000 00000001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>10000010 00000100 00000111 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x\gg 31)</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>(0x1)</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>((x\gg 31) & 0x1)</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>
Using Shifts and Masks

- Conditionals as Boolean expressions
 - For int x, what does \((x\ll\ll31)\gg31\) do?

<table>
<thead>
<tr>
<th>x=!!123</th>
<th>00000000 00000000 00000000 00000001</th>
</tr>
</thead>
<tbody>
<tr>
<td>x<<31</td>
<td>10000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>(x<<31)>>31</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>!x</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>!x<<31</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>(!x<<31)>>31</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>

- Can use in place of conditional:
 - In C: `if(x) {a=y;} else {a=z;}` equivalent to `a=x?y:z;`
 - `a=((x<<31)>>31)&y) | (((!x<<31)>>31)&z);`
Summary

- Sign and unsigned variables in C
 - Bit pattern remains the same, just interpret differently
 - Strange things can happen with our arithmetic when we convert/cast between sign and unsigned numbers
 - Type of variables affects behavior of operators (shifting, comparison)

- We can only represent so many numbers in \(w \) bits
 - When we exceed the limits, arithmetic overflow occurs
 - Sign extension tries to preserve value when expanding

- Shifting is a useful bitwise operator
 - Can be used in multiplication with constant or bit masking
 - Right shifting can be arithmetic (sign) or logical (0)