Please read through the entire examination first! We designed this exam so that it can be completed in 50 minutes and, hopefully, this estimate will prove to be reasonable.

There are 4 problems for a total of 100 points. The point value of each problem is indicated in the table below. Write your answer neatly in the spaces provided. If you need more space, you can write on the back of the sheet where the question is posed, but please make sure that you indicate clearly the problem to which the comments apply. If you have difficulty with part of a problem, move on to the next one. They are independent of each other.

The exam is CLOSED book and CLOSED notes (no summary sheets, no calculators, no mobile phones, no laptops). Please do not ask or provide anything to anyone else in the class during the exam. Make sure to ask clarification questions early so that both you and the others may benefit as much as possible from the answers.

Good Luck!

Name: ________________________

Student ID: ___________________

Section: _______________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Max Score</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. Number Representation (20 points)

Integers

(a) Assuming unsigned integers, what is the result when you compute UMAX+1?

0

(b) Assuming two’s complement signed representation, what is the result when you compute TMAX+1?

TMIN (0x80000000)

Floating Point

(c) Give M and E in the floating point representation of 3.75. Express each in both decimal and binary. (Remember, E is the actual value of the exponent, not the encoding with bias)

<table>
<thead>
<tr>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td>1.111 or .111</td>
</tr>
</tbody>
</table>

Because the format of M was unspecified, either with or without implicit 1 was acceptable

(d) Is the ‘==’ operator a good test of equality for floating point values? Why or why not?

No, the == operator is not a good test of equality because floating point numbers often have a margin of error.

Casting and Pointers

(e) Given the following code:

```c
float f = 5.0;
int i = (int) f;
int j = *((int *)&f);
```

Does i==j return true or false? Explain.

i != j because i will contain the estimate of f as an integer while j contains the bit pattern representation of 5.0 in floating point.
2. Assembly and C (20 points)

Consider the following x86-64 assembly and C code:

```assembly
<do_something>:
    test %rsi,%rsi
    je <end>
    xor %rax,%rax
    sub $0x1,%rsi

<loop>:
    lea (%rdi,%rsi, 2),%rdx
    add (%rdx),%ax
    sub $0x1,%rsi
    jns <loop>

<end>:
    retq
```

```c
int do_something(short* a, int len) {
    int result = 0, i;
    for (i = len - 1; i >= 0 ; i--) {
        result += a[i];
    }
    return result;
}
```

(a) Both code segments are implementations of the unknown function `do_something`. Fill in the missing blanks in both versions. (Hint: `%rax` and `%rdi` are used for `result` and `a` respectively. `%rsi` is used for both `len` and `i`)

(b) Briefly describe the value that `do_something` returns and how it is computed. Use only variable names from the C version in your answer.

`do_something` returns the sum of the shorts pointed to by `a`. It does so by traversing the array backwards.
3. Pointers and Values (25 points)

Consider the following variable declarations:

```c
int x;
int y[11] = {0,1,2,3,4,5,6,7,8,9,10};
int z[][5] = {{210, 211, 212, 213, 214}, {310, 311, 312, 313,314}};
int aa[3] = {{410, 411, 412}};
int bb[3] = {510, 511, 512};
int cc[3] = {610, 611, 612};
int *w[3] = {aa, bb, cc};
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>0x000</td>
</tr>
<tr>
<td>bb</td>
<td>0x100</td>
</tr>
<tr>
<td>cc</td>
<td>0x200</td>
</tr>
<tr>
<td>w</td>
<td>0x300</td>
</tr>
<tr>
<td>x</td>
<td>0x400</td>
</tr>
<tr>
<td>y</td>
<td>N/A</td>
</tr>
<tr>
<td>z</td>
<td>0x600</td>
</tr>
</tbody>
</table>

(a) Fill in the table below with the address, value, and type of the given C expressions. Answer N/A if it is not possible to determine the address or value of the expression. The first row has been filled in for you.

<table>
<thead>
<tr>
<th>C Expression</th>
<th>Address</th>
<th>Value</th>
<th>Type (int/int*/int**)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0x400</td>
<td>N/A</td>
<td>int</td>
</tr>
<tr>
<td>*&x</td>
<td>0x400</td>
<td>N/A</td>
<td>int</td>
</tr>
<tr>
<td>y</td>
<td>N/A</td>
<td>0x500</td>
<td>int*</td>
</tr>
<tr>
<td>*y</td>
<td>0x500</td>
<td>0</td>
<td>int</td>
</tr>
<tr>
<td>y[0]</td>
<td>0x500</td>
<td>0</td>
<td>int</td>
</tr>
<tr>
<td>*(y+1)</td>
<td>0x504</td>
<td>1</td>
<td>int</td>
</tr>
<tr>
<td>&(y[10])</td>
<td>N/A</td>
<td>0x528</td>
<td>int*</td>
</tr>
<tr>
<td>z[0]+1</td>
<td>N/A</td>
<td>0x604</td>
<td>int*</td>
</tr>
<tr>
<td>*(z[0]+1)</td>
<td>0x604</td>
<td>211</td>
<td>int</td>
</tr>
<tr>
<td>z[0][6]</td>
<td>0x618</td>
<td>311</td>
<td>int</td>
</tr>
<tr>
<td>w[1]</td>
<td>0x308</td>
<td>0x100</td>
<td>int*</td>
</tr>
<tr>
<td>w[2][0]</td>
<td>0x200</td>
<td>610</td>
<td>int</td>
</tr>
</tbody>
</table>
4. Recursion (35 points)

The fictional Fibonatri sequence is defined recursively for $n=0,1,\ldots$ by the following C code:

```c
int fibonatri(int n) {
    if (n == 0) {
        return 0;
    } else if (n == 1) {
        return 1;
    } else if (n == 2) {
        return 2;
    } else {
        return fibonatri(n-3) - fibonatri(n-2) + fibonatri(n-1);
    }
}
```

Here is a disassembly of `fibonatri()`:

```
000000000040057b <fibonatri>:
   40057b: 53 push %rbx
   40057c: 48 83 ec 10 sub $0x10,%rsp
   400580: 89 7c 24 0c mov %edi,0xc(%rsp)
   400584: 83 7c 24 0c 00 cmpl $0x0,0xc(%rsp)
   400589: 75 07 jne 400592 <fibonatri+0x17>
   40058b: b8 00 00 00 00 mov $0x0,%eax
   400590: eb 4c jmp 4005de <fibonatri+0x63>
   400592: 83 7c 24 0c 01 cmpl $0x1,0xc(%rsp)
   400597: 75 07 jne 4005a0 <fibonatri+0x25>
   400599: b8 01 00 00 00 mov $0x1,%eax
   40059e: eb 3e jmp 4005de <fibonatri+0x63>
   4005a0: 83 7c 24 0c 02 cmpl $0x2,0xc(%rsp)
   4005a5: 75 07 jne 4005ae <fibonatri+0x33>
   4005a7: b8 02 00 00 00 mov $0x2,%eax
   4005ac: eb 30 jmp 4005de <fibonatri+0x63>
   4005ae: ?? ?? ?? ?? mov 0xc(%rsp),%eax
   4005b2: 83 e8 03 sub $0x3,%eax
   4005b5: 89 c7 mov %eax,%edi
   4005b7: e8 bf ff ff ff callq 40057b <fibonatri>
   4005bc: 89 c3 mov %eax,%ebx
   4005be: 8b 44 24 0c mov 0xc(%rsp),%eax
   4005c2: 83 e8 02 sub $0x2,%eax
   4005c5: 89 c7 mov %eax,%edi
   4005c7: ?? ?? ?? ?? callq 40057b <fibonatri>
   4005cc: 29 c3 sub %eax,%ebx
   4005ce: 8b 44 24 0c mov 0xc(%rsp),%eax
   4005d2: ?? ?? ?? ?? sub $0x1,%eax
   4005d5: 89 c7 mov %eax,%edi
   4005d7: e8 9f ff ff ff callq 40057b <fibonatri>
   4005dc: ?? ?? ?? ?? add %ebx,%eax
   4005de: 48 83 c4 10 add $0x10,%rsp
   4005e2: 5b pop %rbx
   4005e3: c3 retq
```
(a) Fill in the four blanks in the disassembly. You should be able to gather hints from the surrounding code.

(b) What register is used to pass the single argument to fibonatri()?

\%edi

(c) Why is the register \%rbx pushed onto the stack at the beginning of the function?

\%rbx is pushed on to the stack because it is a callee saved register and is used during fibonatri().

(d) Why are iterative solutions generally preferred over recursive solutions from a memory usage perspective? How much of the stack is used during each iteration of fibonatri()?

Because fibonatri() is recursive, each call to fibonatri() creates a new stack frame. From a memory usage perspective this can use large amounts of the stack and has the possibility of overflowing the stack if it is called too many times.

The stack frame of fibonatri() is 32 bytes. 8 bytes for \%rbx, 16 bytes for local variables, and 8 bytes for the return address.

(e) What pattern do numbers in the Fibonatri sequence follow?

0, 1, 2, 1, 0, 1, 2, 1, ...

Extra Credit (15 points)

Write a non-recursive function in C with the same output as fibonatri() using only a switch statement (Hint: use the modulus \% operator)

```c
int fibonatri_non_recursive(int n) {
    switch(n \% 4){
        case 0: return 0;
        case 1: return 1;
        case 2: return 2;
        case 3: return 1;
    }
}
```
References

Powers of 2:

\[
\begin{align*}
2^0 &= 1 \\
2^1 &= 2 \quad 2^{-1} = 0.5 \\
2^2 &= 4 \quad 2^{-2} = 0.25 \\
2^3 &= 8 \quad 2^{-3} = 0.125 \\
2^4 &= 16 \quad 2^{-4} = 0.0625 \\
2^5 &= 32 \quad 2^{-5} = 0.03125 \\
2^6 &= 64 \quad 2^{-6} = 0.015625 \\
2^7 &= 128 \quad 2^{-7} = 0.0078125 \\
2^8 &= 256 \quad 2^{-8} = 0.00390625 \\
2^9 &= 512 \quad 2^{-9} = 0.001953125 \\
2^{10} &= 1024 \quad 2^{-10} = 0.0009765625
\end{align*}
\]

Hex help:

\[
\begin{align*}
0x00 &= 0 \\
0x0A &= 10 \\
0x0F &= 15 \\
0x20 &= 32 \\
0x28 &= 40 \\
0x2A &= 42 \\
0x2F &= 47
\end{align*}
\]

Assembly Code Instructions:

- **push**: push a value onto the stack and decrement the stack pointer
- **pop**: pop a value from the stack and increment the stack pointer
- **call**: jump to a procedure after first pushing a return address onto the stack
- **ret**: pop return address from stack and jump there
- **mov**: move a value between registers and memory
- **lea**: compute effective address and store in a register
- **add**: add src (1st operand) to dst (2nd) with result stored in dst (2nd)
- **sub**: subtract src (1st operand) from dst (2nd) with result stored in dst (2nd)
- **and**: bit-wise AND of src and dst with result stored in dst
- **or**: bit-wise OR of src and dst with result stored in dst
- **sar**: shift data in the dst to the right (arithmetic shift) by the number of bits specified in 1st operand
- **jmp**: jump to address
- **jne**: conditional jump to address if zero flag is not set
- **jns**: conditional jump to address if sign flag is not set
- **cmp**: subtract src (1st operand) from dst (2nd) and set flags
- **test**: bit-wise AND src and dst and set flags
Register map for x86-64:

Note: all registers are caller-saved except those explicitly marked as callee-saved, namely, rbx, rbp, r12, r13, r14, and r15. rsp is a special register.

<table>
<thead>
<tr>
<th>%rax</th>
<th>Return Value</th>
<th>%r8</th>
<th>Argument #5</th>
</tr>
</thead>
<tbody>
<tr>
<td>%rbx</td>
<td>Callee Saved</td>
<td>%r9</td>
<td>Argument #6</td>
</tr>
<tr>
<td>%rcx</td>
<td>Argument #4</td>
<td>%r10</td>
<td>Caller Saved</td>
</tr>
<tr>
<td>%rdx</td>
<td>Argument #3</td>
<td>%r11</td>
<td>Caller Saved</td>
</tr>
<tr>
<td>%rsi</td>
<td>Argument #2</td>
<td>%r12</td>
<td>Callee Saved</td>
</tr>
<tr>
<td>%rdi</td>
<td>Argument #1</td>
<td>%r13</td>
<td>Callee Saved</td>
</tr>
<tr>
<td>%rsp</td>
<td>Stack Pointer</td>
<td>%r14</td>
<td>Callee Saved</td>
</tr>
<tr>
<td>%rbp</td>
<td>Callee Saved</td>
<td>%r15</td>
<td>Callee Saved</td>
</tr>
</tbody>
</table>