Please read through the entire examination first! We designed this exam so that it can be completed in 50 minutes and, hopefully, this estimate will prove to be reasonable.

There are 4 problems for a total of 100 points. The point value of each problem is indicated in the table below. Write your answer neatly in the spaces provided. If you need more space, you can write on the back of the sheet where the question is posed, but please make sure that you indicate clearly the problem to which the comments apply. If you have difficulty with part of a problem, move on to the next one. They are independent of each other.

The exam is CLOSED book and CLOSED notes (no summary sheets, no calculators, no mobile phones, no laptops). Please do not ask or provide anything to anyone else in the class during the exam. Make sure to ask clarification questions early so that both you and the others may benefit as much as possible from the answers.

Good Luck!

<table>
<thead>
<tr>
<th>Name:</th>
<th>________________________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student ID:</td>
<td>____________________________</td>
</tr>
<tr>
<td>Section:</td>
<td>____________________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem</th>
<th>Max Score</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. Number Representation (20 points)

Integers

(a) Assuming unsigned integers, what is the result when you compute UMAX+1?

(b) Assuming two’s complement signed representation, what is the result when you compute TMAX+1?

Floating Point

(c) Give M and E in the floating point representation of 3.75. Express each in both decimal and binary. (Remember, E is the actual value of the exponent, not the encoding with bias)

<table>
<thead>
<tr>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
</tbody>
</table>

(d) Is the ‘==’ operator a good test of equality for floating point values? Why or why not?

Casting and Pointers

(e) Given the following code:

```c
float f = 5.0;
int i = (int) f;
int j = *((int *)&f);
```

Does i==j return true or false? Explain.
2. Assembly and C (20 points)

Consider the following x86-64 assembly and C code:

```
<do_something>:
    cmp $0x0,%rsi
    ___ <end>
    xor %rax,%rax
    sub $0x1,%rsi

<loop>:
    lea (%rdi,%rsi,___),%rdx
    add (%rdx),%ax
    sub $0x1,%rsi
    jns <loop>

<end>:
    retq
```

```
int do_something(short* a, int len) {
    int result = 0, i;
    for (i = _____; i >= 0 ; _____) {
        ______________;
    }
    return result;
}
```

(a) Both code segments are implementations of the unknown function `do_something`. Fill in the missing blanks in both versions. (Hint: %rax and %rdi are used for `result` and `a` respectively. %rsi is used for both `len` and `i`)

(b) Briefly describe the value that `do_something` returns and how it is computed. Use only variable names from the C version in your answer.
3. Pointers and Values (25 points)

Consider the following variable declarations assuming x86-64 architecture:

```c
int x;
int y[11] = {0,1,2,3,4,5,6,7,8,9,10};
int z[][5] = {{210, 211, 212, 213, 214}, {310, 311, 312, 313,314}};
int aa[3] = {410, 411, 412};
int bb[3] = {510, 511, 512};
int cc[3] = {610, 611, 612};
int *w[3] = {aa, bb, cc};
```

(a) Fill in the table below with the address, value, and type of the given C expressions. Answer N/A if it is not possible to determine the address or value of the expression. The first row has been filled in for you.

<table>
<thead>
<tr>
<th>C Expression</th>
<th>Address</th>
<th>Value</th>
<th>Type (int/int*/int**)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0x400</td>
<td>N/A</td>
<td>int</td>
</tr>
<tr>
<td>*x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y[0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*(y+1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&amp;(y[10])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z[0]+1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*(z[0]+1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>z[0][6]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w[1]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>w[2][0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Recursion (35 points)

The fictional Fibonatri sequence is defined recursively for \( n=0,1,\ldots \) by the following C code:

```c
int fibonatri(int n) {
    if (n == 0) {
        return 0;
    } else if (n == 1) {
        return 1;
    } else if (n == 2) {
        return 2;
    } else {
        return fibonatri(n-3) - fibonatri(n-2) + fibonatri(n-1);
    }
}
```

Here is a disassembly of `fibonatri()`:

```assembly
000000000040057b <fibonatri>:
  40057b: 53 push %rbx
  40057c: 48 83 ec 10 sub $0x10,%rsp
  400580: 89 7c 24 0c mov %edi,0xc(%rsp)
  400584: 83 7c 24 0c 00 cmpl $0x0,0xc(%rsp)
  400589: 75 07 jne 400592 <fibonatri+0x17>
  40058b: b8 00 00 00 00 mov $0x0,%eax
  400590: eb 4c jmp 4005de <fibonatri+0x63>
  400592: 83 7c 24 0c 01 cmpl $0x1,0xc(%rsp)
  400597: 75 07 jne 4005a0 <fibonatri+0x25>
  400599: b8 01 00 00 00 mov $0x1,%eax
  40059e: eb 3e jmp 4005de <fibonatri+0x63>
  4005a0: 83 7c 24 0c 02 cmpl $0x2,0xc(%rsp)
  4005a5: 75 07 jne 4005ae <fibonatri+0x33>
  4005a7: b8 02 00 00 00 mov $0x2,%eax
  4005ae: ?? ?? ?? ??
  4005b2: eb 30 jmp 4005de <fibonatri+0x63>
  4005b5: 83 e8 03 sub $0x3,%eax
  4005b8: 89 c7 mov %eax,%edi
  4005bc: e8 bf ff ff ff callq 40057b <fibonatri>
  4005be: 8b 44 24 0c mov 0xc(%rsp),%eax
  4005c2: 83 e8 02 sub $0x2,%eax
  4005c5: 89 c7 mov %eax,%edi
  4005cc: ?? ?? ?? ??
  4005ce: 29 c3 sub %eax,%ebx
  4005d0: 8b 44 24 0c mov 0xc(%rsp),%eax
  4005d4: ?? ?? ?? ??
  4005d5: 89 c7 mov %eax,%edi
  4005d7: e8 9f ff ff ff callq 40057b <fibonatri>
  4005dc: ?? ?? ?? ??
  4005de: 48 83 c4 10 add $0x10,%rsp
  4005e2: 5b pop %rbx
  4005e3: c3 retq
```

5 of 8
(a) Fill in the four blanks in the disassembly. You should be able to gather hints from the surrounding code.

(b) What register is used to pass the single argument to fibonatri()?

(c) Why is the register %rbx pushed onto the stack at the beginning of the function?

(d) Why are iterative solutions generally preferred over recursive solutions from a memory usage perspective? How much of the stack is used during each iteration of fibonatri()?

(e) What pattern do numbers in the Fibonatri sequence follow?

Extra Credit (15 points)
Write a non-recursive function in C with the same output as fibonatri() using only a switch statement (Hint: use the modulus % operator)
References

Powers of 2:

<table>
<thead>
<tr>
<th>Power</th>
<th>Value</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^0$</td>
<td>1</td>
<td>0x00</td>
<td>0000</td>
</tr>
<tr>
<td>$2^1$</td>
<td>2</td>
<td>0x02</td>
<td>0010</td>
</tr>
<tr>
<td>$2^2$</td>
<td>4</td>
<td>0x04</td>
<td>0100</td>
</tr>
<tr>
<td>$2^3$</td>
<td>8</td>
<td>0x08</td>
<td>1000</td>
</tr>
<tr>
<td>$2^4$</td>
<td>16</td>
<td>0x10</td>
<td>10000</td>
</tr>
<tr>
<td>$2^5$</td>
<td>32</td>
<td>0x20</td>
<td>100000</td>
</tr>
<tr>
<td>$2^6$</td>
<td>64</td>
<td>0x40</td>
<td>1000000</td>
</tr>
<tr>
<td>$2^7$</td>
<td>128</td>
<td>0x80</td>
<td>10000000</td>
</tr>
<tr>
<td>$2^8$</td>
<td>256</td>
<td>0x100</td>
<td>100000000</td>
</tr>
<tr>
<td>$2^9$</td>
<td>512</td>
<td>0x200</td>
<td>1000000000</td>
</tr>
<tr>
<td>$2^{10}$</td>
<td>1024</td>
<td>0x400</td>
<td>10000000000</td>
</tr>
</tbody>
</table>

Hex help:

- 0x00 = 0
- 0x0A = 10
- 0x0F = 15
- 0x20 = 32
- 0x28 = 40
- 0x2A = 42
- 0x2F = 47

Assembly Code Instructions:

- **push**: push a value onto the stack and decrement the stack pointer
- **pop**: pop a value from the stack and increment the stack pointer
- **call**: jump to a procedure after first pushing a return address onto the stack
- **ret**: pop return address from stack and jump there
- **mov**: move a value between registers and memory
- **lea**: compute effective address and store in a register
- **add**: add src (1st operand) to dst (2nd) with result stored in dst (2nd)
- **sub**: subtract src (1st operand) from dst (2nd) with result stored in dst (2nd)
- **and**: bit-wise AND of src and dst with result stored in dst
- **or**: bit-wise OR of src and dst with result stored in dst
- **sar**: shift data in the dst to the right (arithmetic shift) by the number of bits specified in 1st operand
- **jmp**: jump to address
- **jne**: conditional jump to address if zero flag is not set
- **jns**: conditional jump to address if sign flag is not set
- **cmp**: subtract src (1st operand) from dst (2nd) and set flags
- **test**: bit-wise AND src and dst and set flags
Register map for x86-64:

Note: all registers are caller-saved except those explicitly marked as callee-saved, namely, rbx, rbp, r12, r13, r14, and r15. rsp is a special register.

<table>
<thead>
<tr>
<th>%rax</th>
<th>Return Value</th>
<th>%r8</th>
<th>Argument #5</th>
</tr>
</thead>
<tbody>
<tr>
<td>%rbx</td>
<td>Callee Saved</td>
<td>%r9</td>
<td>Argument #6</td>
</tr>
<tr>
<td>%rcx</td>
<td>Argument #4</td>
<td>%r10</td>
<td>Caller Saved</td>
</tr>
<tr>
<td>%rdx</td>
<td>Argument #3</td>
<td>%r11</td>
<td>Caller Saved</td>
</tr>
<tr>
<td>%rsi</td>
<td>Argument #2</td>
<td>%r12</td>
<td>Callee Saved</td>
</tr>
<tr>
<td>%rdi</td>
<td>Argument #1</td>
<td>%r13</td>
<td>Callee Saved</td>
</tr>
<tr>
<td>%rsp</td>
<td>Stack Pointer</td>
<td>%r14</td>
<td>Callee Saved</td>
</tr>
<tr>
<td>%rbp</td>
<td>Callee Saved</td>
<td>%r15</td>
<td>Callee Saved</td>
</tr>
</tbody>
</table>