Please read through the entire examination first! We designed this exam so that it can be completed in 50 minutes and, hopefully, this estimate will prove to be reasonable.

There are 5 problems for a total of 100 points, and one 10 point extra credit problem. The point value of each problem is indicated in the table below. Write your answer neatly in the spaces provided. If you need more space, you can write on the back of the sheet where the question is posed, but please make sure that you indicate clearly the problem to which the comments apply, and that you write your name on all pages. If you have difficulty with part of a problem, move on to the next one. They are independent of each other.

The exam is CLOSED book and CLOSED notes (no summary sheets, no mobile phones, no laptops, and simple calculators only). Please do not ask or provide anything to anyone else in the class during the exam. Make sure to ask clarification questions early so that both you and the others may benefit as much as possible from the answers.

Good luck and have fun!

Name: ____________________________

Student ID: ________________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Max Score</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>EC</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
1 Number Representation (10 points)

Let \(x = 0xE \) and \(y = 0x7 \) be integers stored on a machine with a word size of 4 bits. Show your work with the following math operations. The answers—including truncation—should match those given by our hypothetical machine with 4-bit registers.

A. (2pt) What hex value is the result of adding these two numbers?

B. (2pt) Interpreting these numbers as unsigned ints, what is the decimal result of adding \(x + y \)?

C. (2pt) Interpreting \(x \) and \(y \) as two's complement integers, what is the decimal result of computing \(x - y \)?

D. (2pt) In one word, what is the phenomenon happening in 1B?

E. (2pt) Circle all statements below that are TRUE on a 32-bit architecture:

- It is possible to lose precision when converting from an int to a float.
- It is possible to lose precision when converting from a float to an int.
- It is possible to lose precision when converting from an int into a double.
- It is possible to lose precision when converting from a double into an int.
2 IA32 ASM to C (20 points)

A function 'mystery' has the following overall structure:

```c
int mystery (int x, int y){
    int result;
    for (__________________; ________________; result++){
        ________________;
        ________________;
    }
    ________________;
    return result;
}
```

The GCC C compiler generates the following x86 (IA32) assembly code (x is at %ebp+8, y at %ebp+12)

```assembly
01  pushl  %ebp
02  movl  %esp, %ebp
03  movl  8(%ebp), %ecx
04  movl  12(%ebp), %edx
05  movl  $0, %eax
06  test  %ecx, %ecx
07  jz    .L3
08  .L6
09  addl  %ecx, %edx
10  subl  $1, %ecx
11  addl  $1, %eax
12  cmpl  $0, %ecx
13  jg    .L6
14  .L3
15  addl  %edx, %eax
16  popl  %ebp
17  ret
```

Fill in the blanks in mystery based on the assembly code above. You may only use the symbolic variables x, y, and result in your expressions. Do not use register names.
3 C to ASM (30 points)

Write x86-64 assembly instructions (see the reference sheet for the list of instructions that you can use on this exam) that might be generated by the following function foo. It may be a good idea to consult the register chart provided on the reference sheet.

```c
int foo (int a, int b){
    int c, d;
    c = a / 16;
    d = b * 64;
    if (c > d)
        return a;
    else
        return b;
}
```

Place the assembly code for function foo here (you should need fewer than 15 instructions), and a comment for each line of your code. You may only use the instructions that are on reference sheet!
4 Stack Discipline (20 points)

Given the C function

```c
int proc ( void ){
    int a[3];
    scanf("%x %x %x", &a[1], &a[0], &a[2]);
    return a[2];
}
```

GCC generates the following code:

```assembly
01 pushl %ebp
02 movl %esp, %ebp
03 pushl %ebx
04 pushl %esi
05 subl $0x20, %esp
06 leal -20(%ebp), %eax
07 movl $0, %esi
08 leal (%eax,%esi, 4), %ebx
09 movl %ebx, 8(%esp)
10 addl $1, %esi
11 leal (%eax,%esi, 4), %ebx
12 movl %ebx, 4(%esp)
13 addl $1, %esi
14 leal (%eax,%esi, 4), %ebx
15 movl %ebx, 12(%esp)
16 movl $.LC0, (%esp)  #Pointer to string "%x %x %x"
17 call scanf <= here
18 movl (%ebx), %eax
19 addl $0x28, %esp
20 popl %esi
21 popl %ebx
22 movl %ebp, %esp
23 popl %ebp
24 ret
```

Draw a picture depicting the stack frame of `proc` immediately before the call to `scanf` (labeled "here" above). Draw labeled arrows indicating where the stack and frame pointers are. If needed, you can assume that `%esp = 0x800040` and `%ebp = 0x800060` before `proc` begins. The next page is left blank to give you more room.

Note: though not necessary to solve the problem, `scanf` is much like the `sscanf` you saw in Lab 2 (matching an input string to some format), except it reads the input string from `stdin` (the terminal).
5 Structs (10 points)

Suppose you are given the following struct definition for an x86-64 architecture which is used to implement a linked list of all tweets in Katelin’s SuperTwitter implementation.

typedef struct Super_Tweet{
 char super_tweeter[21];
 int num_retweets;
 int num_favorites;
 long id;
 tweet* next;
 int datetime_encoded; //seconds since SuperTwitter was launched
} tweet

A. Given the above definition, fill in the following table:

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Offset</th>
<th>Size of Field (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>super tweeter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(wasted space)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>num retweets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>num favorites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>next</td>
<td></td>
<td></td>
</tr>
<tr>
<td>datetime encoded</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(wasted space)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. What is the size of the struct?

C. How much internal fragmentation does this struct have?

D. How much external fragmentation does this struct have?
Arrays (10 points, extra credit)

In the space below, draw the memory layout on a 32-bit machine for:

```c
char a[2][3] = {{'a', 'b', 'c'}, {'d', 'e', 'f'}}
```

```
| 0x00 |   |   |
| 0x04 |   |   |
| 0x08 |   |   |
| 0x0C |   |   |
| 0x10 |   |   |
| 0x14 |   |   |
| 0x18 |   |   |
| 0x1C |   |   |
```

```c
char *b[2] = {"foo", "bar"};
```

Hint: you may place "foo" and "bar" somewhere in memory, to get an address.

```
| 0x00 |   |   |
| 0x04 |   |   |
| 0x08 |   |   |
| 0x0C |   |   |
| 0x10 |   |   |
| 0x14 |   |   |
| 0x18 |   |   |
| 0x1C |   |   |
```
References

Powers of 2: Hex help:

\[
\begin{align*}
2^0 &= 1 & 0x00 &= 0 \\
2^1 &= 2 & 2^{-1} &= 0.5 & 0x0A &= 10 \\
2^2 &= 4 & 2^{-2} &= 0.25 & 0x0F &= 15 \\
2^3 &= 8 & 2^{-3} &= 0.125 & 0x20 &= 32 \\
2^4 &= 16 & 2^{-4} &= 0.0625 & 0x28 &= 40 \\
2^5 &= 32 & 2^{-5} &= 0.03125 & 0x2A &= 42 \\
2^6 &= 64 & 2^{-6} &= 0.015625 & 0x2F &= 47 \\
2^7 &= 128 & 2^{-7} &= 0.0078125 \\
2^8 &= 256 & 2^{-8} &= 0.00390625 \\
2^9 &= 512 & 2^{-9} &= 0.001953125 \\
2^{10} &= 1024 & 2^{-10} &= 0.0009765625
\end{align*}
\]

Assembly Code Instructions:

- **push**: push a value onto the stack and decrement the stack pointer
- **pop**: pop a value from the stack and increment the stack pointer
- **call**: jump to a procedure after first pushing a return address onto the stack
- **ret**: pop return address from stack and jump there
- **mov**: move a value between registers and memory
- **lea**: compute effective address and store in a register
- **add**: add src (1st operand) to dst (2nd) with result stored in dst (2nd)
- **sub**: subtract src (1st operand) from dst (2nd) with result stored in dst (2nd)
- **and**: bit-wise AND of src and dst with result stored in dst
- **or**: bit-wise OR of src and dst with result stored in dst
- **sar**: shift data in the dst to the right (arithmetic) by the number in 1st operand
- **shl**: shift data in the dst to the left by the number of bits specified in 1st operand
- **jmp**: jump to address
- **jg**: conditional jump to address if not zero flag and not sign flag
- **jle**: conditional jump to address if zero flag or sign flag
- **jne**: conditional jump to address if zero flag is not set
- **jns**: conditional jump to address if sign flag is not set
- **cmp**: subtract src (1st operand) from dst (2nd) and set flags
- **test**: bit-wise AND src and dst and set flags

9 of 10
Register map for x86-64:

Note: all registers are caller-saved except those explicitly marked as callee-saved, namely, rbx, rbp, r12, r13, r14, and r15. rsp is a special register.

<table>
<thead>
<tr>
<th>Register</th>
<th>Description</th>
<th>Register</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%rax</td>
<td>Return Value</td>
<td>%r8</td>
<td>Argument #5</td>
</tr>
<tr>
<td>%rbx</td>
<td>Callee Saved</td>
<td>%r9</td>
<td>Argument #6</td>
</tr>
<tr>
<td>%rcx</td>
<td>Argument #4</td>
<td>%r10</td>
<td>Caller Saved</td>
</tr>
<tr>
<td>%rdx</td>
<td>Argument #3</td>
<td>%r11</td>
<td>Caller Saved</td>
</tr>
<tr>
<td>%rsi</td>
<td>Argument #2</td>
<td>%r12</td>
<td>Callee Saved</td>
</tr>
<tr>
<td>%rdi</td>
<td>Argument #1</td>
<td>%r13</td>
<td>Callee Saved</td>
</tr>
<tr>
<td>%rsp</td>
<td>Stack Pointer</td>
<td>%r14</td>
<td>Callee Saved</td>
</tr>
<tr>
<td>%rbp</td>
<td>Callee Saved</td>
<td>%r15</td>
<td>Callee Saved</td>
</tr>
</tbody>
</table>