
The Hardware/Software Interface  
CSE351 Spring 2015

Instructor:
Katelin Bailey

Teaching Assistants:
Kaleo Brandt, Dylan Johnson, Luke Nelson, Alfian Rizqi, Kritin Vij, David
Wong, and Shan Yang

Who are we?

2

Katelin

• 90-ish students (and likely to be several more)
• Majors, non-majors
• Fans of computer science!
• Who has written a program:

• …in Java?
• …in C?
• …in assembly?
• …with multiple threads?

Who are you?

3

• Website: cse.uw.edu/351

• Lab 0 released after class, due Monday, 4/6 at 5pm
• Make sure you get our virtual machine set up
• Basic exercises to start getting familiar with C
• Credit/no-credit
• Get this done as quickly as possible

• If you are not yet enrolled: don’t forget the overload form!
• If you are enrolled, but don’t have a CSE account: request one!

Quick Announcements

4

http://cs.uw.edu/351

The Hardware/Software Interface

5

• What is hardware? Software?

The Hardware/Software Interface

5

• What is hardware? Software?

• What is an interface?

The Hardware/Software Interface

5

• What is hardware? Software?

• What is an interface?

HW/SW Interface

The Hardware/Software Interface

5

• What is hardware? Software?

• What is an interface?

• Why do we need a hardware/software interface?

HW/SW Interface

The Hardware/Software Interface

5

• What is hardware? Software?

• What is an interface?

• Why do we need a hardware/software interface?

• Why do we need to understand both sides of this interface?

HW/SW Interface

if (x != 0) y = (y+z)/x;

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

C/Java, assembly, and machine code

6

 cmpl $0, -4(%ebp)
 je .L2
 movl -12(%ebp), %eax
 movl -8(%ebp), %edx
 leal (%edx, %eax), %eax
 movl %eax, %edx
 sarl $31, %edx
 idivl -4(%ebp)
 movl %eax, -8(%ebp)
.L2:

if (x != 0) y = (y+z)/x;

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

C/Java, assembly, and machine code

6

 cmpl $0, -4(%ebp)
 je .L2
 movl -12(%ebp), %eax
 movl -8(%ebp), %edx
 leal (%edx, %eax), %eax
 movl %eax, %edx
 sarl $31, %edx
 idivl -4(%ebp)
 movl %eax, -8(%ebp)
.L2:

High level languages: C or Java

Assembly Language Machine Code

if (x != 0) y = (y+z)/x;

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

C/Java, assembly, and machine code

6

 cmpl $0, -4(%ebp)
 je .L2
 movl -12(%ebp), %eax
 movl -8(%ebp), %edx
 leal (%edx, %eax), %eax
 movl %eax, %edx
 sarl $31, %edx
 idivl -4(%ebp)
 movl %eax, -8(%ebp)
.L2:

compiler

assembler

High level languages: C or Java

Assembly Language Machine Code

if (x != 0) y = (y+z)/x;

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

C/Java, assembly, and machine code

6

 cmpl $0, -4(%ebp)
 je .L2
 movl -12(%ebp), %eax
 movl -8(%ebp), %edx
 leal (%edx, %eax), %eax
 movl %eax, %edx
 sarl $31, %edx
 idivl -4(%ebp)
 movl %eax, -8(%ebp)
.L2:

compiler

assembler

if (x != 0) y = (y+z)/x;

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

C/Java, assembly, and machine code

6

 cmpl $0, -4(%ebp)
 je .L2
 movl -12(%ebp), %eax
 movl -8(%ebp), %edx
 leal (%edx, %eax), %eax
 movl %eax, %edx
 sarl $31, %edx
 idivl -4(%ebp)
 movl %eax, -8(%ebp)
.L2:

• The three program fragments are equivalent
• You'd rather write C! - a more human-friendly language
• The hardware likes bit strings! - everything is voltages

• The machine instructions are actually much shorter than the number of bits
we would need to represent the characters in the assembly language

compiler

assembler

• Hardware started out quite primitive
• Hardware designs were expensive & instructions had to be very simple –

e.g., a single instruction for adding two integers
• Software was also very basic

• Software primitives reflected the hardware pretty closely

HW/SW Interface: Historical Perspective

7

Hardware

Architecture Specification (Interface)

• Life was made a lot better by assemblers
• One assembly instruction = One machine instruction, but...
• different syntax: assembly instructions are character strings, not bit strings, a

lot easier to read/write by humans
• can use symbolic names

HW/SW Interface: Assemblers

8

Hardware

User 
program  

in  
asm

Assembler specification

Assembler

• Higher level of abstraction:
• one line of a high-level language is compiled into many (sometimes very

many) lines of assembly language

HW/SW Interface: Higher Level Languages

9

Hardware
User 

program  
in C

C language specification

AssemblerC
compiler

HW/SW Interface: Code/Compile/Run Times

10

Note: The compiler and assembler are just programs, developed using  
 this same process.

.exe file.c file

Code Time Compile Time Run Time

Hardware
User 

program  
in C

AssemblerC
compiler

1. Course themes: big and little
2. Roadmap of course topics
3. Three important realities
4. How the course fits into the CSE curriculum
5. Logistics

Outline for Today

11

• Computing is about abstractions
• (but we can’t forget reality)

• What are the abstractions that we use?
• What do YOU need to know about them?

• When do they break down and you have to peek under the hood?
• What bugs can they cause and how do you find them?

• How does the hardware (0s and 1s, processor executing
instructions) relate to the software (C/Java programs)?

• Become a better programmer and begin to understand the important
concepts that have evolved in building ever more complex computer
systems

The Big Theme: Interfaces and Abstractions

12

Roadmap

13

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =  
 c.getMPG();

get_mpg:
 pushq %rbp
 movq %rsp, %rbp
 ...
 popq %rbp
 ret

Java:C:

Assembly
language:

Machine code: 0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Roadmap

13

‣Memory, data, &
addressing

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =  
 c.getMPG();

get_mpg:
 pushq %rbp
 movq %rsp, %rbp
 ...
 popq %rbp
 ret

Java:C:

Assembly
language:

Machine code: 0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Roadmap

13

‣Memory, data, &
addressing
‣ Integers & floats

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =  
 c.getMPG();

get_mpg:
 pushq %rbp
 movq %rsp, %rbp
 ...
 popq %rbp
 ret

Java:C:

Assembly
language:

Machine code: 0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Roadmap

13

‣Memory, data, &
addressing
‣ Integers & floats
‣Machine code & C

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =  
 c.getMPG();

get_mpg:
 pushq %rbp
 movq %rsp, %rbp
 ...
 popq %rbp
 ret

Java:C:

Assembly
language:

Machine code: 0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Roadmap

13

‣Memory, data, &
addressing
‣ Integers & floats
‣Machine code & C
‣ x86 assembly

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =  
 c.getMPG();

get_mpg:
 pushq %rbp
 movq %rsp, %rbp
 ...
 popq %rbp
 ret

Java:C:

Assembly
language:

Machine code: 0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Roadmap

13

‣Memory, data, &
addressing
‣ Integers & floats
‣Machine code & C
‣ x86 assembly
‣ Procedures & stacks

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =  
 c.getMPG();

get_mpg:
 pushq %rbp
 movq %rsp, %rbp
 ...
 popq %rbp
 ret

Java:C:

Assembly
language:

Machine code: 0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Roadmap

13

‣Memory, data, &
addressing
‣ Integers & floats
‣Machine code & C
‣ x86 assembly
‣ Procedures & stacks
‣ Arrays & structs

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =  
 c.getMPG();

get_mpg:
 pushq %rbp
 movq %rsp, %rbp
 ...
 popq %rbp
 ret

Java:C:

Assembly
language:

Machine code: 0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Roadmap

13

‣Memory, data, &
addressing
‣ Integers & floats
‣Machine code & C
‣ x86 assembly
‣ Procedures & stacks
‣ Arrays & structs
‣Memory & caches

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =  
 c.getMPG();

get_mpg:
 pushq %rbp
 movq %rsp, %rbp
 ...
 popq %rbp
 ret

Java:C:

Assembly
language:

Machine code: 0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Roadmap

13

‣Memory, data, &
addressing
‣ Integers & floats
‣Machine code & C
‣ x86 assembly
‣ Procedures & stacks
‣ Arrays & structs
‣Memory & caches
‣ Processes

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =  
 c.getMPG();

get_mpg:
 pushq %rbp
 movq %rsp, %rbp
 ...
 popq %rbp
 ret

Java:C:

Assembly
language:

Machine code: 0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Roadmap

13

‣Memory, data, &
addressing
‣ Integers & floats
‣Machine code & C
‣ x86 assembly
‣ Procedures & stacks
‣ Arrays & structs
‣Memory & caches
‣ Processes
‣ Virtual memory

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =  
 c.getMPG();

get_mpg:
 pushq %rbp
 movq %rsp, %rbp
 ...
 popq %rbp
 ret

Java:C:

Assembly
language:

Machine code: 0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Roadmap

13

‣Memory, data, &
addressing
‣ Integers & floats
‣Machine code & C
‣ x86 assembly
‣ Procedures & stacks
‣ Arrays & structs
‣Memory & caches
‣ Processes
‣ Virtual memory
‣Memory allocation

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =  
 c.getMPG();

get_mpg:
 pushq %rbp
 movq %rsp, %rbp
 ...
 popq %rbp
 ret

Java:C:

Assembly
language:

Machine code: 0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Roadmap

13

‣Memory, data, &
addressing
‣ Integers & floats
‣Machine code & C
‣ x86 assembly
‣ Procedures & stacks
‣ Arrays & structs
‣Memory & caches
‣ Processes
‣ Virtual memory
‣Memory allocation
‣ Java vs. C

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =  
 c.getMPG();

get_mpg:
 pushq %rbp
 movq %rsp, %rbp
 ...
 popq %rbp
 ret

Java:C:

Assembly
language:

Machine code: 0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Roadmap

13

‣Memory, data, &
addressing
‣ Integers & floats
‣Machine code & C
‣ x86 assembly
‣ Procedures & stacks
‣ Arrays & structs
‣Memory & caches
‣ Processes
‣ Virtual memory
‣Memory allocation
‣ Java vs. C

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =  
 c.getMPG();

get_mpg:
 pushq %rbp
 movq %rsp, %rbp
 ...
 popq %rbp
 ret

Java:C:

Assembly
language:

Machine code: 0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

• All digital systems represent everything as 0s and 1s
• The 0 and 1 are really two different voltage ranges in the wires

• “Everything” includes:
• Numbers – integers and floating point
• Characters – the building blocks of strings
• Instructions – the directives to the CPU that make up a program
• Pointers – addresses of data objects stored away in memory

• These encodings are stored throughout a computer system
• In registers, caches, memories, disks, etc.

• They all need addresses
• A way to find them
• Find a new place to put a new item
• Reclaim the place in memory when data no longer needed

Little Theme 1: Representation

14

• There is a big gap between how we think about programs and
data and the 0s and 1s of computers

• Need languages to describe what we mean
• Languages need to be translated one step at a time

• Words, phrases and grammars
• We know Java as a programming language

• Have to work our way down to the 0s and 1s of computers
• Try not to lose anything in translation!
• We’ll encounter Java byte-codes, C language, assembly language, and

machine code (for the X86 family of CPU architectures)

Little Theme 2: Translation

15

• How do computers orchestrate the many things they are doing?
• In one program:

• How do we implement if/else, loops, switches?
• What do we have to keep track of when we call a procedure, and then

another, and then another, and so on?
• How do we know what to do upon “return”?

• Across programs and operating systems:
• Multiple user programs
• Operating system has to orchestrate them all

• Each gets a share of computing cycles
• They may need to share system resources (memory, I/O, disks)

• Yielding and taking control of the processor
• Voluntary or “by force”?

Little Theme 3: Control Flow

16

• Representations are finite
• Example 1: Is x2 ≥ 0?

• Floats: Yes!
• Ints:

• 40000 * 40000 --> 1600000000
• 50000 * 50000 --> ??

• Example 2: Is (x + y) + z = x + (y + z)?
• Unsigned & Signed Ints: Yes!
• Floats:

• (1e20 + -1e20) + 3.14 --> 3.14
• 1e20 + (-1e20 + 3.14) --> ??

Reality #1: ints ≠ integers & floats ≠ reals

17

• Why? Because we want you to suffer?

Reality #2: Assembly still matters

18

• Chances are, you’ll never write a program in assembly code
• Compilers are much better and more patient than you are

• But: understanding assembly is the key to the machine-level
execution model

• Behavior of programs in presence of bugs
• High-level language model breaks down

• Tuning program performance
• Understand optimizations done/not done by the compiler
• Understanding sources of program inefficiency

• Implementing system software
• Operating systems must manage process state

• Fighting malicious software
• Using special units (timers, I/O co-processors, etc.) inside processor!

Reality #2: Assembly still matters

19

• Time Stamp Counter
• Special 64-bit register in Intel-compatible machines
• Incremented every clock cycle
• Read with rdtsc instruction

• Application
• Measure time (in clock cycles) required by procedure

Assembly Code Example

20

double t;
start_counter();
P();
t = get_counter();
printf("P required %f clock cycles\n", t);

• Write small amount of assembly code using GCC’s asm facility
• Inserts assembly code into machine code generated by

compiler

Code to Read Counter

21

/* Set *hi and *lo (two 32-bit values) to the  
 high and low order bits of the cycle counter.
*/
 
void access_counter(unsigned *hi, unsigned *lo)
{
 asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo) /* output */
: /* input */
: "%edx", "%eax"); /* clobbered */

}

• So, what is memory?

Reality #3: Memory Matters

22

• Memory is not unbounded
• It must be allocated and managed
• Many applications are memory-dominated

• Memory referencing bugs are especially pernicious
• Effects are distant in both time and space

• Memory performance is not uniform
• Cache and virtual memory effects can greatly affect program performance
• Adapting program to characteristics of memory system can lead to major

speed improvements

Reality #3: Memory Matters

23

Memory Referencing Bug Example

24

double fun(int i)
{
 volatile double d[1] = {3.14};
 volatile long int a[2];
 a[i] = 1073741824; /* Possibly out of bounds */
 return d[0];
}

fun(0) –> 3.14
fun(1) –> 3.14
fun(2) –> 3.1399998664856
fun(3) –> 2.00000061035156
fun(4) –> 3.14, then segmentation fault

0

Memory Referencing Bug Example

24

double fun(int i)
{
 volatile double d[1] = {3.14};
 volatile long int a[2];
 a[i] = 1073741824; /* Possibly out of bounds */
 return d[0];
}

fun(0) –> 3.14
fun(1) –> 3.14
fun(2) –> 3.1399998664856
fun(3) –> 2.00000061035156
fun(4) –> 3.14, then segmentation fault

0

Saved State

d7 … d4

d3 … d0

a[1]

a[0]

1

2

3

4

Location accessed
by fun(i)

Explanation:

• C (and C++) do not provide any memory protection
• Out of bounds array references
• Invalid pointer values
• Abuses of malloc/free

• Can lead to nasty bugs
• Whether or not bug has any effect depends on system and compiler
• Action at a distance

• Corrupted object logically unrelated to one being accessed
• Effect of bug may be first observed long after it is generated

• How can I deal with this?
• Program in Java (or C#, or ML, or Haskell, or Ruby, or Racket, or …)
• Understand what possible interactions may occur
• Use or develop tools to detect referencing errors

Memory Referencing Errors

25

• Hierarchical memory organization
• Performance depends on access patterns

• Including how program steps through multi-dimensional array

Memory System Performance Example

26

void copyji(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (j = 0; j < 2048; j++)
 for (i = 0; i < 2048; i++)
 dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (i = 0; i < 2048; i++)
 for (j = 0; j < 2048; j++)
 dst[i][j] = src[i][j];
}

21 times slower 
(Pentium 4)

You might ask,
“Why would someone write code in a grotesque language that exposes
raw memory addresses? Why not use a modern language with garbage
collection and functional programming and free massages after lunch?”

Here’s the answer: Pointers are real.
They’re what the hardware understands.

Somebody has to deal with them.

-James Mickens “The Night Watch”

27

• Foundation: basics of high-level programming (Java)
• Understanding of some of the abstractions that exist between

programs and the hardware they run on, why they exist, and
how they build upon each other

• Knowledge of some of the details of underlying
implementations

• Become more effective programmers
• More efficient at finding and eliminating bugs
• Understand some of the many factors that influence program performance
• Facility with a couple more of the many languages that we use to describe

programs and data
• Prepare for later classes in CSE

Course Outcomes

28

• Pre-requisites
• 142 and 143: Intro Programming I and II
• Also recommended: 390A: System and Software Tools

• One of 6 core courses
• 311: Foundations of Computing I
• 312: Foundations of Computing II
• 331: SW Design and Implementation
• 332: Data Abstractions
• 351: HW/SW Interface
• 352: HW Design and Implementation

• 351 provides the context for many follow-on courses.

CSE351’s role in the CSE Curriculum

29

CSE351’s role in the CSE Curriculum

30

CSE351

CSE451
Op Systems

CSE401
Compilers

Concurrency

CSE333
Systems Prog

Performance

CSE484
Security

CSE466
Emb Systems

CS 143
Intro Prog II

CSE352
HW Design

Comp. Arch.

CSE461
Networks

Distributed 
Systems

CSE477/481/490/etc.
Capstone and Project Courses

The HW/SW Interface: 
underlying principles linking
hardware and software

Execution  
Model

Real-Time 
Control

Machine
Code

• This course will make you a better programmer.
• Purpose is to show how software really works
• By understanding the underlying system, one can be more effective as a

programmer.
• Better debugging
• Better basis for evaluating performance
• How multiple activities work in concert (e.g., OS and user programs)

• Not just a course for dedicated hackers
• What every CSE major needs to know
• Job interviewers love to ask questions from 351!

• Provide a context in which to place the other CSE courses you’ll take

Course Perspective

31

• Computer Systems: A Programmer’s Perspective, 2nd Edition
• Randal E. Bryant and David R. O’Hallaron
• Prentice-Hall, 2010
• http://csapp.cs.cmu.edu
• This book really matters for the course!

• How to solve labs
• Practice problems typical of exam problems

• A good C book – any will do
• The C Programming Language (Kernighan and Ritchie)
• C: A Reference Manual (Harbison and Steele)

Textbooks

32

http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/

• Lectures (28)
• Introduce the concepts; supplemented by textbook

• Sections (10)
• Applied concepts, important tools and skills for labs, clarification of lectures,

exam review and preparation
• Written homework assignments (4)

• Mostly problems from text to solidify understanding
• Labs (5, plus “lab 0”)

• Provide in-depth understanding (via practice) of an aspect of system
• Exams (midterm + final)

• Test your understanding of concepts and principles
• Midterm currently scheduled for Friday, May 01, in class.
• Final is definitely Wednesday, June 10 at 2:30 (UW scheduled).

Course Components

33

• Course web page
• cs.uw.edu/351
• Schedule, policies, labs, homeworks, and everything else

• Course discussion board
• Keep in touch outside of class – help each other
• Staff will monitor and contribute

• Course mailing list – check your @uw.edu
• Low traffic – mostly announcements; you are already subscribed

• Office hours, appointments, drop-ins
• Staff e-mail: cse351-staff@cs.washington.edu

• Things that are not appropriate for discussion board or better offline
• Anonymous feedback

• Anything where you would prefer not attaching your name

Resources

34

• Exams (45%): 15% midterm, 30% final
• Written assignments (20%): weighted according to effort

• We’ll try to make these about the same
• Lab assignments (35%): weighted according to effort

• These will likely increase in weight as the quarter progresses
• Late days:

• 3 late days to use as you wish throughout the quarter – see website
• Collaboration:

• http://www.cs.washington.edu/education/courses/cse351/15sp/policies.html
• http://www.cs.washington.edu/students/policies/misconduct

Policies: Grading

35

http://www.cs.washington.edu/education/courses/cse351/13wi/policies.html
http://www.cs.washington.edu/education/courses/cse351/13wi/policies.html
http://www.cs.washington.edu/education/courses/cse351/13wi/policies.html
http://www.cs.washington.edu/students/policies/misconduct

• Consider taking CSE 390A Unix Tools, 1 credit, useful skills
• Office hours will be held this week, check web page for times
• Lab 0, due Monday, 1/12 at 5pm

• On the website
• Install CSE home VM early, make sure it works for you
• Basic exercises to start getting familiar with C
• Get this done as quickly as possible

• Section Thursday
• Please install the virtual machine BEFORE coming to section
• BRING your computer with you to section
• We will have some in-class activities to help you get started with lab 0

Other Details

36

• Let’s have fun
• Let’s learn – together
• Let’s communicate
• Let’s make this a useful class for all of us

• Many thanks to the many instructors who have shared their
lecture notes – I will be borrowing liberally through the qtr –
they deserve all the credit, the errors are all mine

• CMU: Randy Bryant, David O’Halloran, Gregory Kesden, Markus Püschel
• Harvard: Matt Welsh (now at Google-Seattle)
• UW: Gaetano Borriello, Luis Ceze, Peter Hornyack, Hal Perkins, Ben Wood,

John Zahorjan,

Welcome to 351!

37

