Number Bases

• Any numerical value can be represented as a linear combination of powers of \(n\), where \(n\) is an integer greater than 1
• Example: decimal \((n=10)\)
 • Decimal numbers are just linear combinations of 1, 10, 100, 1000, etc
 • \(1234 = 1*1000 + 2*100 + 3*10 + 4*1\)
• We can also use the base \(n=2\) (binary) or \(n=16\) (hexadecimal)
Binary Numbers

• Each digit is either a 1 or a 0
• Each digit corresponds to a power of 2
• Why use binary?
 • Easy to physically represent two states in memory, registers, across wires, etc
 • High/Low voltage levels
 • This can scale to much larger numbers by using more hardware to store more bits
Converting Binary Numbers

• To convert the decimal number \(d \) to binary, do the following:
 • Compute \((d \% 2)\). This will give you the lowest-order bit
 • Continue to divide \(d \) by 2, round down to the nearest integer, and compute \((d \% 2)\) for successive bits
• Example: Convert 25 to binary
 • First bit: \((25 \% 2) = 1\)
 • Second bit: \((12 \% 2) = 0\)
 • Third bit: \(6 \% 2 = 0\)
 • Fourth bit: \(3 \% 2 = 1\)
 • Fifth bit: \(1 \% 2 = 1\)
 • Stop because we reached zero
Hexadecimal Numbers

• Same concept as decimal and binary, but the base is 16
• Why use hexadecimal?
 • Easy to convert between hex and binary
 • Much more compact than binary
Converting Hexadecimal Numbers

• To convert a decimal number to hexadecimal, use the same technique we used for binary, but divide/mod by 16 instead of 2
• Hexadecimal numbers have a prefix of “0x”
• Example: Convert 1234 to hexadecimal
 • First digit: \((1234 \ % \ 16) = 2\)
 • \(1234 / 16 = 77\)
 • Second digit: \((77 \ % \ 16) = 13 = D\)
 • \(77 / 16 = 4\)
 • Third digit: \(4 \ % \ 16 = 4\)
 • \(4 / 16 = 0\)
 • Stop because we reached zero
 • Result: \(0x4D2\)
Representing Signed Integers

• There are several ways to represent signed integers
• Sign & Magnitude
 • Use 1 bit for the sign, remaining bits for magnitude
 • Works OK, but there are 2 ways to represent zero (-0 and 0)
 • Also, arithmetic is tricky
• Two’s Complement
 • Similar to regular binary representation
 • Highest bit has negative weight rather than positive
 • Works well with arithmetic, only one way to represent zero
Two’s Complement

- This is an example of the range of numbers that can be represented by a 4-bit two’s complement number
- An n bit, two’s complement number can represent the range $[-2^{(n-1)}, 2^{(n-1)}-1]$
 - Note the asymmetry of this range about 0
- Note what happens when you overflow
- If you still don’t understand it, speak up!
 - Very confusing concept
Bitwise Operators

• **NOT**: ~
 • This will flip all bits in the operand
• **AND**: &
 • This will perform a bitwise AND on every pair of bits
• **OR**: |
 • This will perform a bitwise OR on every pair of bits
• **XOR**: ^
 • This will perform a bitwise XOR on every pair of bits
• **SHIFT**: <<,>>
 • This will shift the bits right or left
Logical Operators

• **NOT:** !
 • Evaluates the entire operand, rather than each bit
 • Produces a 1 if == 0, produces 0 otherwise

• **AND:** &&
 • Produces 1 if both operands are nonzero

• **OR:** ||
 • Produces 1 if either operand is nonzero
Common Operator Uses

• A double bang (!!) is useful when normalizing values to 0 or 1
 • Imitates Boolean types

• Shifts are useful for multiplying/dividing quickly
 • Most multiplications are reduced to shifts when possible by GCC already
 • When writing assembly routines, shifts will be more useful
 • Shifts are also consistent for negative numbers (thanks to sign extension)

• DeMorgan’s Laws:
 • \(\neg (A \lor B) \equiv (\neg A \land \neg B) \)
 • \(\neg (A \land B) \equiv (\neg A \lor \neg B) \)
Masks

• These are usually strings of 1s that are used to isolate a subset of bits in an operand
 • Example: the mask 0xFF will “mask” the first byte of an integer
• Once you have created a mask, you can shift it left or right
 • Example: the mask 0xFF << 8 will “mask” the second byte of an integer
• You can apply a mask in different ways
 • To set bits in x, you can do $x = x | \text{MASK}$
 • To invert bits in x, you can do $x = x ^ \text{MASK}$
 • To erase everything but the desired bits in x, do $x = x & \text{MASK}$
Application: Symmetric Encryption

• This is an example that shows how XOR can be used to encrypt data
• Say Alice wishes to communicate message M to Bob
 • Let M be the bit string: 0b11011010
• Both Alice and Bob have a secret cipher key C
 • Let C be the bit string: 0b01100010
• Alice sends Bob the encrypted message $M' = M \oplus C$
 • $M' = 0b10111000$
• Bob applies C to M' to retrieve M
 • $M' \oplus C = 0b11011010$
• XOR ciphers are not very secure by themselves, but the XOR operation is used in some modes of AES encryption
Application: Gray Codes

• Gray Codes encode numbers such that consecutive numbers only differ in their representations by 1 bit
 • Useful when trying to transfer counter values across different clock domains (common in FIFOs)
 • If each wire represents one binary digit, we want to ensure that when the counter increments, the voltage level changes only on one wire
• Let \(n \) be our counter output
 • \((n >> 1) ^ n\) will produce a gray coded version of \(n \)
• If we receive the gray code \(g \), we need to convert it to \(n \):
  ```c
  for (int mask = g >> 1; mask != 0; mask >> 1) {
    g = g ^ mask;
  }
  ```
• For an example, compile and run `gray_code.c`
Lab 1

• Worksheet in class
• Tips
 • Work on 8-bit versions first, then scale your solution to work for 32-bit inputs
 • Save intermediate results in variables for clarity
 • **SHIFTING BY MORE THAN 31 BITS IS UNDEFINED!** It will not yield 0
Example Problems

• Create 0xFFFFFFFF using only one operator
 • Limited to constants from 0x00 -> 0xFF
 • Naïve approach: 0xFF + (0xFF << 8) + (0xFF << 16) ...
 • Smart approach: ~0x00 = 0xFFFFFFFF
Example Problems

• Replace the leftmost byte of a 32-bit integer with 0xAB
 • Let our integer be x
 • First, we want to create a mask for the lower 24 bits of the image
 • ~(0xFF << 24) will do that using just two operations
 • (x & mask) will zero out the leftmost 8 bits
 • Now, we want to OR in 0xAB to those zeroed-out bits
 • (x & mask) | (0xAB << 24) will accomplish this
 • Total operators: 5