Roadmap

C:
```
car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);
```

Java:
```
Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg = c.getMPG();
```

Assembly language:
```
get_mpg:
    pushq   %rbp
    movq    %rsp, %rbp
    ...
    popq    %rbp
    ret
```

Machine code:
```
0111010000011000
1000110100000100
1000100111000010
1100000111111010
1000000111100001
1100000111110100
```

Computer system:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C
Integers

- Representation of integers: unsigned and signed
- Casting
- Arithmetic and shifting
- Sign extension
But before we get to integers....

- Encode a standard deck of playing cards.
- 52 cards in 4 suits
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?
Two possible representations

- 52 cards – 52 bits with bit corresponding to card set to 1

- “One-hot” encoding

- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required

low-order 52 bits of 64-bit word
Two possible representations

- 52 cards – 52 bits with bit corresponding to card set to 1

 low-order 52 bits of 64-bit word

 "One-hot" encoding

 Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required

- 4 bits for suit, 13 bits for card value – 17 bits with two set to 1

 Pair of one-hot encoded values

 Easier to compare suits and values
 - Still an excessive number of bits

Can we do better?
Two better representations

- Binary encoding of all 52 cards – only 6 bits needed
 - Fits in one byte
 - Smaller than one-hot encodings.
 - How can we make value and suit comparisons easier?

low-order 6 bits of a byte
Two better representations

- Binary encoding of all 52 cards – only 6 bits needed
 - Fits in one byte
 - Smaller than one-hot encodings.
 - How can we make value and suit comparisons easier?

- Binary encoding of suit (2 bits) and value (4 bits) separately
 - Also fits in one byte, and easy to do comparisons
Compare Card Suits

```c
#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
    return (!( (card1 & SUIT_MASK) ^ (card2 & SUIT_MASK) ));
    //return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}
```

returns int SUIT_MASK = 0x30 = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} equivalent

<table>
<thead>
<tr>
<th>suit</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

char hand[5]; // represents a 5-card hand
char card1, card2; // two cards to compare

...

if (sameSuitP(card1, card2)) { ... }

mask: a bit vector that, when bitwise ANDed with another bit vector \(v \), turns all _but_ the bits of interest in \(v \) to 0
#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
 return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
 //return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}

SUIT_MASK = 0x30 = \[0\ 0\ 1\ 1\ 0\ 0\ 0\ 0\]

char hand[5];
char card1, card2;

if (sameSuitP(card1, card2)) { ... }

mask: a bit vector that, when bitwise ANDed with another bit vector \(v\), turns all *but* the bits of interest in \(v\) to 0
Compare Card Values

```
#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
    return ((unsigned int)(card1 & VALUE_MASK) >
             (unsigned int)(card2 & VALUE_MASK));
}
```

mask: a bit vector that, when bitwise ANDed with another bit vector \(v \), turns all but the bits of interest in \(v \) to 0

```
char hand[5];       // represents a 5-card hand
char card1, card2;  // two cards to compare

// ... 

if ( greaterValue(card1, card2) ) { ... }
```

VALUE_MASK = 0x0F = 0 0 0 0 1 1 1 1

<table>
<thead>
<tr>
<th>suit</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
# Compare Card Values

```
#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
 return ((unsigned int)(card1 & VALUE_MASK) >
 (unsigned int)(card2 & VALUE_MASK));
}
```

**VALUE_MASK** = 0x0F = \[0 \, 0 \, 0 \, 0 \, 1 \, 1 \, 1 \, 1\]

- suit
- value

```
char hand[5];
char card1, card2;

card1 = hand[0];
card2 = hand[1];
...
if (greaterValue(card1, card2)) { ... }
```
Encoding Integers

- The hardware (and C) supports two flavors of integers:
  - *unsigned* – only the non-negatives
  - *signed* – both negatives and non-negatives

- There are only $2^W$ distinct bit patterns of $W$ bits, so...
  - Can not represent all the integers
  - *Unsigned values*: $0 \ldots 2^W-1$
  - *Signed values*: $-2^{W-1} \ldots 2^{W-1}-1$

- Reminder: terminology for binary representations
  - “Most-significant” or “high-order” bit(s)
  - “Least-significant” or “low-order” bit(s)
Unsigned Integers

- Unsigned values are just what you expect
  - \( b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + b_52^5 + \ldots + b_12^1 + b_02^0 \)
  - Useful formula: \( 1+2+4+8+\ldots+2^{N-1} = 2^N - 1 \)

- Add and subtract using the normal “carry” and “borrow” rules, just in binary.

- How would you make signed integers?
Signed Integers: Sign-and-Magnitude

- Let's do the natural thing for the positives
  - They correspond to the unsigned integers of the same value
    - Example (8 bits): 0x00 = 0, 0x01 = 1, ..., 0x7F = 127

- But, we need to let about half of them be negative
  - Use the high-order bit to indicate negative: call it the “sign bit”
    - Call this a “sign-and-magnitude” representation
  - Examples (8 bits):
    - 0x00 = 00000000\(_2\) is non-negative, because the sign bit is 0
    - 0x7F = 01111111\(_2\) is non-negative
    - 0x85 = 10000101\(_2\) is negative
    - 0x80 = 10000000\(_2\) is negative...
Signed Integers: Sign-and-Magnitude

- How should we represent -1 in binary?
  - \(10000001_2\)

Use the MSB for + or -, and the other bits to give magnitude.

Most Significant Bit

![Diagram](image-url)
Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
  - \(10000001_2\)
    - Use the MSB for + or -, and the other bits to give magnitude.
    - (Unfortunate side effect: there are two representations of 0!)
Sign-and-Magnitude Negatives

- **How should we represent -1 in binary?**
  - $10000001_2$
    - Use the MSB for + or -, and the other bits to give magnitude.
    - (Unfortunate side effect: there are two representations of 0!)
  - Another problem: arithmetic is cumbersome.
    - Example: $4 - 3 \neq 4 + (-3)$

How do we solve these problems?
Two’s Complement Negatives

How should we represent -1 in binary?
Two’s Complement Negatives

- How should we represent -1 in binary?

Rather than a sign bit, let MSB have same value, but negative weight.

\[ b_{w-1} = 1 \text{ adds } -2^{w-1} \text{ to the value.} \]

for \( i < w-1 \): \( b_i = 1 \text{ adds } +2^i \text{ to the value.} \)
Two’s Complement Negatives

How should we represent -1 in binary?

Rather than a sign bit, let MSB have same value, but **negative weight**.

\[ b_{w-1} = 1 \text{ adds } -2^{w-1} \text{ to the value.} \]

for \( i < w-1 \): \( b_i = 1 \) adds \( +2^i \) to the value.

**e.g.** **unsigned** \( \text{1010}_2 \):

\[ 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 10_{10} \]

2’s compl. \( \text{1010}_2 \):

\[ -1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = -6_{10} \]
Two’s Complement Negatives

How should we represent -1 in binary?

Rather than a sign bit, let MSB have same value, but *negative weight*.

- $b_{w-1} = 1$ adds $-2^{w-1}$ to the value.
- for $i < w-1$: $b_i = 1$ adds $+2^i$ to the value.

E.g. unsigned $1010_2$:

$$1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 10_{10}$$

2’s compl. $1010_2$:

$$-1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = -6_{10}$$

-1 is represented as $1111_2 = -2^3 + (2^3 – 1)$

All negative integers still have MSB = 1.

Advantages: single zero, simple arithmetic

To get negative representation of any integer, take bitwise complement and then add one!

$$\sim x + 1 == -x$$
4-bit Unsigned vs. Two’s Complement

2³ x 1 + 2² x 0 + 2¹ x 1 + 2⁰ x 1

-2³ x 1 + 2² x 0 + 2¹ x 1 + 2⁰ x 1
4-bit Unsigned vs. Two’s Complement

2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1

-2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1

(math) difference = 16 = 2^4
4-bit Unsigned vs. Two’s Complement

1 0 1 1

\[ 2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1 \]

\[ -2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1 \]

(math) difference = 16 = 2^4
Two’s Complement Arithmetic

- The same addition procedure works for both unsigned and two’s complement integers
  - Simplifies hardware: only one algorithm for addition
  - Algorithm: simple addition, discard the highest carry bit
    - Called “modular” addition: result is sum $\mod 2^W$

- Examples:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>+3</td>
<td>+0011</td>
<td>-3</td>
</tr>
<tr>
<td>=7</td>
<td>=0111</td>
<td>=1</td>
</tr>
<tr>
<td></td>
<td>drop carry</td>
<td>=0001</td>
</tr>
</tbody>
</table>
Two’s Complement

Why does it work?

- Put another way, for all positive integers $x$, we want:
  
  $\text{Bit representation of } x$
  
  $+ \text{Bit representation of } -x$
  
  $0$ (ignoring the carry-out bit)

- This turns out to be the \textit{bitwise complement plus one}

  What should the 8-bit representation of -1 be?

  \begin{align*}
  00000001 & \quad + ?????????\\
  \hline
  00000000 & \quad \text{(we want whichever bit string gives the right result)}
  \end{align*}

  \begin{align*}
  00000010 & \quad 00000011 \\
  + ????????? & + ????????? \\
  \hline
  00000000 & \quad 00000000
  \end{align*}
Two’s Complement

- Why does it work?
  - Put another way, for all positive integers \( x \), we want:
    
    \[
    \text{Bit representation of } x + \text{Bit representation of } -x = 0
    \]
    
    (ignoring the carry-out bit)
  - This turns out to be the \textit{bitwise complement plus one}
    
    - What should the 8-bit representation of -1 be?
      
      \[
      \begin{array}{c}
      00000001 \\
      +11111111 \\
      \hline
      100000000
      \end{array}
      \]
      
      (we want whichever bit string gives the right result)
    
      \[
      \begin{array}{c}
      00000010 \\
      +????????? \\
      \hline
      00000000
      \end{array}
      \]
      
      \[
      \begin{array}{c}
      00000011 \\
      +????????? \\
      \hline
      00000000
      \end{array}
      \]
Two’s Complement

Why does it work?

- Put another way, for all positive integers \( x \), we want:

\[
\text{Bit representation of } x + \text{Bit representation of } -x = 0 \quad \text{(ignoring the carry-out bit)}
\]

- This turns out to be the **bitwise complement plus one**

- What should the 8-bit representation of -1 be?

\[
\begin{align*}
00000001 + 11111111 &= 100000000 \\
00000010 + 11111101 &= 100000000 \\
00000011 + 11111100 &= 100000000
\end{align*}
\]

(we want whichever bit string gives the right result)
Unsigned & Signed Numeric Values

Signed and unsigned integers have limits.
- If you compute a number that is too big (positive), it wraps:
  \[ 6 + 4 = ? \quad 15U + 2U = ? \]
- If you compute a number that is too small (negative), it wraps:
  \[ -7 - 3 = ? \quad 0U - 2U = ? \]

The CPU may be capable of “throwing an exception” for overflow on signed values.
- It won't for unsigned.

But C and Java just cruise along silently when overflow occurs... Oops.

<table>
<thead>
<tr>
<th>bits</th>
<th>Unsigned</th>
<th>Signed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Conversion Visualized

- Two’s Complement → Unsigned
  - Ordering Inversion
  - Negative → Big Positive

2’s Complement Range

Unsigned Range

TMax

TMin

0

UMax

UMax – 1

TMax + 1

TMax

0

-2

-1

0
Overflow/Wrapping: Unsigned

addition: drop the carry bit

\[
\begin{array}{c}
15 \\
+ 2 \\
\hline
17 \\
\end{array}
\quad
\begin{array}{c}
1111 \\
+ 0010 \\
\hline
10001 \\
\end{array}
\]

Modular Arithmetic
Overflow/Wrapping: Two’s Complement

addition: drop the carry bit

\[
\begin{array}{c}
-1 \\
+ 2 \\
\hline
1
\end{array}
\begin{array}{c}
1111 \\
+ 0010 \\
\hline
10001
\end{array}
\]

\[
\begin{array}{c}
6 \\
+ 3 \\
\hline
9
\end{array}
\begin{array}{c}
0110 \\
+ 0011 \\
\hline
1001
\end{array}
\]

Modular Arithmetic
Values To Remember

### Unsigned Values

- **UMin** = 0
  - 000...0
- **UMax** = $2^w - 1$
  - 111...1

### Two’s Complement Values

- **TMin** = $-2^{w-1}$
  - 100...0
- **TMax** = $2^{w-1} - 1$
  - 011...1

**Negative one**

- 111...1 0xF...F

### Values for $W = 32$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>4,294,967,296</td>
<td>FF FF FF FF</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>Tmax</td>
<td>2,147,483,647</td>
<td>7F FF FF FF</td>
<td>01111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-2,147,483,648</td>
<td>80 00 00 00</td>
<td>10000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF FF FF</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00 00 00</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>

**Autumn 2015**
Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Use “U” suffix to force unsigned:
  - 0U, 4294967259U
Signed vs. Unsigned in C

Casting

- int tx, ty;
- unsigned ux, uy;

- **Explicit** casting between signed & unsigned:
  - tx = (int) ux;
  - uy = (unsigned) ty;

- **Implicit** casting also occurs via assignments and function calls:
  - tx = ux;
  - uy = ty;

  - The gcc flag `-Wsign-conversion` produces warnings for implicit casts, but `-Wall` does not!

- How does casting between signed and unsigned work?
- What values are going to be produced?
Signed vs. Unsigned in C

- Casting
  - int tx, ty;
  - unsigned ux, uy;
  - Explicit casting between signed & unsigned:
    - tx = (int) ux;
    - uy = (unsigned) ty;
  - Implicit casting also occurs via assignments and function calls:
    - tx = ux;
    - uy = ty;
    - The gcc flag -Wsign-conversion produces warnings for implicit casts, but -Wall does not!
- How does casting between signed and unsigned work?
- What values are going to be produced?
  - *Bits are unchanged*, just interpreted differently!
Casting Surprises

- Expression Evaluation
  - If you mix unsigned and signed in a single expression, then *signed values are implicitly cast to unsigned*.
  - Including comparison operations `<`, `>`, `==`, `<=`, `>=`
  - Examples for $W = 32$: $TMIN = -2,147,483,648$   $TMAX = 2,147,483,647$

<table>
<thead>
<tr>
<th>Constant$_1$</th>
<th>Constant$_2$</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>&lt;</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>&gt;</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td>&gt;</td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483648</td>
<td>&lt;</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>&gt;</td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned)-1</td>
<td>-2</td>
<td>&gt;</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td>&lt;</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>&gt;</td>
<td>signed</td>
</tr>
</tbody>
</table>
Casting Surprises

- If you mix unsigned and signed in a single expression, then *signed values are implicitly cast to unsigned* (The bit pattern does not change, bits are just interpreted differently.)

- Examples for $W = 32$:

Reminder: $T_{MIN} = -2,147,483,648$  $T_{MAX} = 2,147,483,647$

<table>
<thead>
<tr>
<th>Constant&lt;sub&gt;1&lt;/sub&gt;</th>
<th>Constant&lt;sub&gt;2&lt;/sub&gt;</th>
<th>Relation</th>
<th>Interpret the bits as:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0000 0000 0000 0000 0000 0000 0000 0000</td>
<td>0U 0000 0000 0000 0000 0000 0000 0000 0000</td>
<td>==</td>
<td>Unsigned</td>
</tr>
<tr>
<td>-1 1111 1111 1111 1111 1111 1111 1111 1111</td>
<td>0 0000 0000 0000 0000 0000 0000 0000 0000</td>
<td>&lt;</td>
<td>Signed</td>
</tr>
<tr>
<td>-1 1111 1111 1111 1111 1111 1111 1111 1111</td>
<td>0U 0000 0000 0000 0000 0000 0000 0000 0000</td>
<td>&gt;</td>
<td>Unsigned</td>
</tr>
<tr>
<td>2147483647 0111 1111 1111 1111 1111 1111 1111 1111</td>
<td>-2147483648 1000 0000 0000 0000 0000 0000 0000 0000</td>
<td>&gt;</td>
<td>Signed</td>
</tr>
<tr>
<td>2147483647U 0111 1111 1111 1111 1111 1111 1111 1111</td>
<td>-2147483648 1000 0000 0000 0000 0000 0000 0000 0000</td>
<td>&lt;</td>
<td>Unsigned</td>
</tr>
<tr>
<td>-1 1111 1111 1111 1111 1111 1111 1111 1111</td>
<td>-2 1111 1111 1111 1111 1111 1111 1111 1110</td>
<td>&gt;</td>
<td>Signed</td>
</tr>
<tr>
<td>(unsigned) -1 1111 1111 1111 1111 1111 1111 1111 1111</td>
<td>-2 1111 1111 1111 1111 1111 1111 1111 1110</td>
<td>&gt;</td>
<td>Unsigned</td>
</tr>
<tr>
<td>2147483647 0111 1111 1111 1111 1111 1111 1111 1111</td>
<td>2147483648U 1000 0000 0000 0000 0000 0000 0000 0000</td>
<td>&lt;</td>
<td>Unsigned</td>
</tr>
<tr>
<td>2147483647 0111 1111 1111 1111 1111 1111 1111 1111</td>
<td>(int) 2147483648U 1000 0000 0000 0000 0000 0000 0000 0000</td>
<td>&gt;</td>
<td>Signed</td>
</tr>
</tbody>
</table>
Sign Extension

What happens if you convert a 32-bit signed integer to a 64-bit signed integer?
Sign Extension

**Task:**
- Given $w$-bit signed integer $x$
- Convert it to $w+k$-bit integer *with same value*

**Rule:**
- Make $k$ copies of sign bit:
- $X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0$

$k$ copies of MSB

![Diagram](image-url)
8-bit representations

0 0 0 0 1 0 0 1

1 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1

0 0 1 0 0 1 1 1

In C: casting between unsigned and signed just reinterprets the same bits.
Sign Extension

0 0 1 0  
4-bit 2

0 0 0 0 0 0 1 0  
8-bit 2

1 1 0 0  
4-bit -4

? ? ? ? ? 1 1 0 0  
8-bit -4
Sign Extension

\[
\begin{array}{c}
0 0 1 0 \\
0 0 0 0 0 0 1 0 \\
1 1 0 0 \\
0 0 0 0 1 1 0 0 \\
\end{array}
\]

4-bit 2
8-bit 2
4-bit -4
8-bit 12

Just adding zeroes to the front does not work
Sign Extension

0 0 1 0  
4-bit 2

0 0 0 0 0 0 1 0  
8-bit 2

1 1 0 0  
4-bit -4

1 0 0 0 1 1 0 0  
8-bit -116

Just making the first bit=1 also does not work
Sign Extension

0 0 1 0

0 0 0 0 0 0 1 0

1 1 0 0

1 1 1 1 1 0 0

4-bit 2

8-bit 2

4-bit -4

8-bit -4

Need to extend the sign bit to all “new” locations
Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension (Java too)

```
short int x = 12345;
int ix = (int) x;
short int y = -12345;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>12345</td>
<td>30 39</td>
<td>00110000 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>12345</td>
<td>00 00 30 39</td>
<td>00000000 00000000 00110000 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-12345</td>
<td>CF C7</td>
<td>11001111 11000111</td>
</tr>
<tr>
<td>iy</td>
<td>-12345</td>
<td>FF FF CF C7</td>
<td>11111111 11111111 11001111 11000111</td>
</tr>
</tbody>
</table>
Shift Operations

- **Left shift:** \( x \ll n \)
  - Shift bit vector \( x \) left by \( n \) positions
    - Throw away extra bits on left
    - Fill with 0s on right

- **Right shift:** \( x \gg n \)
  - Shift bit-vector \( x \) right by \( n \) positions
    - Throw away extra bits on right
  - **Logical shift** (for unsigned values)
    - Fill with 0s on left
  - **Arithmetic shift** (for signed values)
    - Replicate most significant bit on left
    - Maintains sign of \( x \)

\[ x \gg 9? \]

The behavior of \( \gg \) in C depends on the compiler! It is *arithmetic* shift right in GCC. In Java: \( >>> \) is logical shift right; \( \gg \) is arithmetic shift right.
Shift Operations

- **Left shift:** \( x << n \)
  - Shift bit vector \( x \) left by \( n \) positions
    - Throw away extra bits on left
    - Fill with 0s on right

- **Right shift:** \( x >> n \)
  - Shift bit-vector \( x \) right by \( n \) positions
    - Throw away extra bits on right
  - **Logical shift** (for unsigned values)
    - Fill with 0s on left
  - **Arithmetic shift** (for signed values)
    - Replicate most significant bit on left
    - Maintains sign of \( x \)

<table>
<thead>
<tr>
<th>Argument ( x )</th>
<th>00100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x &lt;&lt; 3 )</td>
<td>00010000</td>
</tr>
<tr>
<td>Logical: ( x &gt;&gt; 2 )</td>
<td>00011000</td>
</tr>
<tr>
<td>Arithmetic: ( x &gt;&gt; 2 )</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument ( x )</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x &lt;&lt; 3 )</td>
<td>00010000</td>
</tr>
<tr>
<td>Logical: ( x &gt;&gt; 2 )</td>
<td>00101000</td>
</tr>
<tr>
<td>Arithmetic: ( x &gt;&gt; 2 )</td>
<td>11101000</td>
</tr>
</tbody>
</table>

**\( x >> 9 \)?**

Shifts by \( n < 0 \) or \( n >= \) size of \( x \) are undefined.

E.g. if \( x \) is a 32-bit int, shifts by \( >= 32 \) bits are undefined.

The behavior of \( >> \) in C depends on the compiler! It is **arithmetic** shift right in GCC.

In Java: \( >>> \) is logical shift right; \( >> \) is arithmetic shift right.
What happens when...

- $x >> n$?

- $x << n$?
What happens when...

- \( x \gg n \): **divide** by \( 2^n \)

- \( x \ll n \): **multiply** by \( 2^n \)

Shifting is faster than general multiply or divide operations
Shifting and Arithmetic Example #1

x = 27;  
0 0 0 1 1 0 1 1

y = x << 2;  
0 0 0 1 1 0 1 1

y == 108  
0 0 1 1 0 1 1 0 0

x*2^n  
logical shift left:
shift in zeros from the right

x/2^n  
logical shift right:
shift in zeros from the left

unsigned
x = 237;  
0 1 1 1 0 1 1 0 1

y = x >> 2;  
y = 59

y == 59
Shifting and Arithmetic Example #2

signed
\[ x = -101; \]
\[ y = x << 2; \]
\[ y == 108 \]

\[ x/2^n \]

arithmetic shift right:
shift in copies of most significant bit from the left

\[ 10011011 \]

\[ 1001101100 \]

\[ 11101101 \]

\[ 11111011101 \]

\[ 111111011101 \]

overflow

\[ x*2^n \]

general shift left:
shift in zeros from the right

\[ y == x >> 2; \]
\[ y == -5 \]

shifts by \( n < 0 \) or \( n \geq \text{size of } x \) are undefined

signed
\[ x = -19; \]
\[ y = x >> 2; \]
\[ y == -5 \]
### Shifting and Arithmetic Example #3

#### General Form:
- $x \ll n$
- $x \gg n$

#### Example:

**$x = 13$;**

$$y = x \ll 3$$

$y == 104$

**Logical shift left:**
- Shift in zeros from the right

**$x = 175$;**

$$y = x \gg 3$$

$y == 21$

**Logical shift right:**
- Shift in zeros from the left

**Unsigned**

$x/2^n$
Shifting and Arithmetic Example #4

\[ x = 73; \]
\[ y = x << 3; \]
\[ y == 72 \]

\[ x = 73; \]
\[ y = x << 3; \]
\[ y == 72 \]

General Form:
\[ x << n \]
\[ x >> n \]

\[ x*2^n \]

Logical shift left:
shift in \textit{zeros} from the right

\[ x = 73; \]
\[ y = x << 3; \]
\[ y == 72 \]

\[ x = -13; \]
\[ y = x >> 3; \]
\[ y == -2 \]

\[ x/2^n \]

\textbf{arithmetic} shift right:
shift in \textit{copies of most significant bit} from the left

\textbf{overflow}

\textbf{rounding (down)}
signed

\[ x = -13; \]
\[ y = x >> 3; \]
\[ y == -2 \]
Using Shifts and Masks

- Extract the 2nd most significant byte of an integer?

<table>
<thead>
<tr>
<th>x</th>
<th>01100001 01100010 01100011 01100100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>01100001 01100010 01100011 01100100</td>
</tr>
</tbody>
</table>

01100001 01100010 01100011 01100100
Using Shifts and Masks

- Extract the 2nd most significant byte of an integer:
  - First shift, then mask: \(( x >> 16 ) \& 0xFF\)

<table>
<thead>
<tr>
<th>x</th>
<th>(01100001)</th>
<th>(01100010)</th>
<th>(01100111)</th>
<th>(01100100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x &gt;&gt; 16)</td>
<td>(00000000)</td>
<td>(00000000)</td>
<td>(01100001)</td>
<td>(01100010)</td>
</tr>
<tr>
<td>(( x &gt;&gt; 16) &amp; 0xFF)</td>
<td>(00000000)</td>
<td>(00000000)</td>
<td>(00000000)</td>
<td>(11111111)</td>
</tr>
<tr>
<td></td>
<td>(00000000)</td>
<td>(00000000)</td>
<td>(00000000)</td>
<td>(01100010)</td>
</tr>
</tbody>
</table>

- Extract the sign bit of a signed integer?
Using Shifts and Masks

- Extract the sign bit of a signed integer:
  - \(( x \gg 31 ) \& 1\) - need the “\& 1” to clear out all other bits except LSB

<table>
<thead>
<tr>
<th>x</th>
<th>[11100001 01100010 01100011 01100100]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \gg 31)</td>
<td>[11111111 11111111 11111111 11111111]</td>
</tr>
<tr>
<td>(( x \gg 31) &amp; 0x1)</td>
<td>[00000000 00000000 00000000 00000001]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>[01100001 01100010 01100011 01100100]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \gg 31)</td>
<td>[00000000 00000000 00000000 00000000]</td>
</tr>
<tr>
<td>(( x \gg 31) &amp; 0x1)</td>
<td>[00000000 00000000 00000000 00000001]</td>
</tr>
</tbody>
</table>

This picture is assuming arithmetic shifts, but process works in either case.
Using Shifts and Masks

- **Conditionals as Boolean expressions (assuming x is 0 or 1)**
  - In C: if (x) a=y else a=z; which is the same as \( a = x ? y : z; \)
    - If x==1 then a=y, otherwise x==0 and a=z
  - Can be re-written (assuming arithmetic right shift) as:
    \[
    a = ( ( (x << 31) >> 31) & y ) | ( ((!x) << 31) >> 31) & z);
    \]

<table>
<thead>
<tr>
<th>x</th>
<th>00000000 00000000 00000000 00000000 00000001</th>
</tr>
</thead>
<tbody>
<tr>
<td>x &lt;&lt; 31</td>
<td>10000000 00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>(( x &lt;&lt; 31) &gt;&gt; 31)</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>y = 257</td>
<td>00000000 00000000 00000001 00000001</td>
</tr>
<tr>
<td>( ( x &lt;&lt; 31) &gt;&gt; 31) &amp; y</td>
<td>00000000 00000000 00000001 00000001</td>
</tr>
</tbody>
</table>

If \( x ==1 \), then \(!x = 0\) and \(( !x) << 31 ) >> 31\) = 00..0; so: \((00..0 & z) = 0\). So:
\[
a = (00000000 00000000 00000001 00000001) | (00...00)\) (in other words a = y )
\]
If \( x ==0 \), then \(!x = 1\) and instead a = z.
One of two sides of the | will always be all zeroes.
Multiplication

- What do you get when you multiply 9 x 9?

- What about $2^{30} \times 3$?

- $2^{30} \times 5$?

- $-2^{31} \times -2^{31}$?
Unsigned Multiplication in C

Operands: \( w \) bits

True Product: \( 2^w \) bits

Discard \( w \) bits: \( w \) bits

- **Standard Multiplication Function**
  - Ignores high order \( w \) bits

- **Implements Modular Arithmetic**
  
  \[
  \text{UMult}_w(u, v) = u \cdot v \mod 2^w
  \]
Power-of-2 Multiply with Shift

**Operation**

- \( u << k \) gives \( u \cdot 2^k \)
- Both signed and unsigned

Operands: \( w \) bits

True Product: \( w+k \) bits

Discard \( k \) bits: \( w \) bits

**Examples**

- \( u << 3 \) == \( u \cdot 8 \)
- \( u << 5 - u << 3 \) == \( u \cdot 24 \)
- Most machines shift and add faster than multiply
  - Compiler generates this code automatically
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void* user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}

#define MSIZE 528
void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
Malicious Usage

#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, -MSIZE);
    ...}

/* Declaration of library function memcpy */
void* memcpy(void* dest, void* src, size_t n);

/* Kernel memory region holding user-accessible data */
declare KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void* user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}
Floating point topics

- Background: fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

There are many more details that we won’t cover
  - It’s a 58-page standard...
Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
  - Can get overflow/underflow, just like ints
  - Some “simple fractions” have no exact representation (e.g., 0.2)
  - Can also lose precision, unlike ints
    - “Every operation gets a slightly wrong result”

- Mathematically equivalent ways of writing an expression may compute different results
  - Violates associativity/distributivity

- **Never** test floating point values for equality!
- **Careful** when converting between ints and floats!
Fractional Binary Numbers

**Representation**

- Bits to right of “binary point” represent fractional powers of 2
- Represents rational number:
  \[
  \sum_{k=-j}^{i} b_k \cdot 2^k
  \]
Fractional Binary Numbers

- **Value**
  - 5 and 3/4
  - 2 and 7/8
  - 47/64

- **Representation**
  - 101.11₂
  - 10.111₂
  - 0.10111₁₂

- **Observations**
  - Shift left = multiply by power of 2
  - Shift right = divide by power of 2
  - Numbers of the form 0.111111...₂ are just below 1.0
    - 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... ➔ 1.0
  - Use notation 1.0 − ε
Limits of Representation

- Limitations:
  - Even given an arbitrary number of bits, can only **exactly** represent numbers of the form $x \times 2^y$ (y can be negative)
  - Other rational numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/3$ = 0.333333...</td>
<td>0.01010101[01]...</td>
</tr>
<tr>
<td>$1/5$</td>
<td>0.001100110011[0011 ]...</td>
</tr>
<tr>
<td>$1/10$</td>
<td>0.0001100110011[0011 ]...</td>
</tr>
</tbody>
</table>
Fixed Point Representation

- **Implied binary point.** Two example schemes:
  - #1: the binary point is between bits 2 and 3
    \[ b_7 b_6 b_5 b_4 b_3 [.] b_2 b_1 b_0 \]
  - #2: the binary point is between bits 4 and 5
    \[ b_7 b_6 b_5 [.] b_4 b_3 b_2 b_1 b_0 \]

- Wherever we put the binary point, with fixed point representations there is a trade off between the amount of range and precision we have.

- **Fixed point = fixed range and fixed precision**
  - range: difference between largest and smallest numbers possible
  - precision: smallest possible difference between any two numbers

- Hard to pick how much you need of each!
Floating Point

- **Analogous to scientific notation**
  - In Decimal:
    - Not 12000000, but $1.2 \times 10^7$  \text{In C: 1.2e7}
    - Not 0.0000012, but $1.2 \times 10^{-6}$  \text{In C: 1.2e-6}
  - In Binary:
    - Not 11000.000, but $1.1 \times 2^4$
    - Not 0.000101, but $1.01 \times 2^{-4}$

- **We have to divvy up the bits we have (e.g., 32) among:**
  - the sign (1 bit)
  - the significand
  - the exponent
IEEE Floating Point

- **IEEE 754**
  - Established in 1985 as uniform standard for floating point arithmetic
  - Main idea: make numerically sensitive programs portable
  - Specifies two things: representation and result of floating operations
  - now supported by all major CPUs

- **Driven by numerical concerns**
  - Numerical analysts predominated over hardware designers in defining standard
  - Nice standards for rounding, overflow, underflow, but...
  - But... hard to make fast in hardware
  - Float operations can be an order of magnitude slower than integer
Floating Point Representation

**Numerical form:**

\[ V_{10} = (-1)^s \times M \times 2^E \]

- Sign bit \( s \) determines whether number is negative or positive
- Significand (mantissa) \( M \) normally a fractional value in range \([1.0,2.0)\)
- Exponent \( E \) weights value by a (possibly negative) power of two
Floating Point Representation

- **Numerical form:**
  \[ V_{10} = (-1)^s * M * 2^E \]
  - Sign bit \( s \) determines whether number is negative or positive
  - Significand (mantissa) \( M \) normally a fractional value in range \([1.0,2.0)\)
  - Exponent \( E \) weights value by a (possibly negative) power of two

- **Representation in memory:**
  - MSB \( s \) is sign bit \( s \)
  - \( exp \) field encodes \( E \) (but is not equal to \( E \))
  - \( frac \) field encodes \( M \) (but is not equal to \( M \))
Precisions

- Single precision: 32 bits
  
<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bit</td>
<td>8 bits</td>
<td>23 bits</td>
</tr>
</tbody>
</table>

- Double precision: 64 bits
  
<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bit</td>
<td>11 bits</td>
<td>52 bits</td>
</tr>
</tbody>
</table>

- Finite representation means not all values can be represented exactly. Some will be approximated.
Normalization and Special Values

\[ V = (-1)^s \times M \times 2^E \]

- “Normalized” = \( M \) has the form 1.xxxxx
  - As in scientific notation, but in binary
  - 0.011 \( \times 2^5 \) and 1.1 \( \times 2^3 \) represent the same number, but the latter makes better use of the available bits
  - Since we know the mantissa starts with a 1, we don't bother to store it

- How do we represent 0.0? Or special or undefined values like 1.0/0.0?
Normalization and Special Values

\[ V = (-1)^S \times M \times 2^E \]

- **“Normalized”** = \( M \) has the form 1.xxxxx
  - As in scientific notation, but in binary
  - 0.011 \( \times 2^5 \) and 1.1 \( \times 2^3 \) represent the same number, but the latter makes better use of the available bits
  - Since we know the mantissa starts with a 1, we don't bother to store it.

- **Special values:**
  - **zero:** \( s == 0 \), \( exp == 00...0 \), \( frac == 00...0 \)
  - **+ \( \infty \), - \( \infty \):** \( exp == 11...1 \), \( frac == 00...0 \)
    - \( 1.0/0.0 = -1.0/-0.0 = +\infty \), \( 1.0/-0.0 = -1.0/0.0 = -\infty \)
  - **NaN** (“Not a Number”): \( exp == 11...1 \), \( frac != 00...0 \)
    - Results from operations with undefined result: \( \sqrt{-1} \), \( \infty - \infty \), \( \infty \times 0 \), etc.
  - **Note:** exp=11...1 and exp=00...0 are reserved, limiting exp range...
Normalized Values

\[ V = (-1)^S \times M \times 2^E \]

- **Condition:** \( \exp \neq 000...0 \) and \( \exp \neq 111...1 \)
- **Exponent coded as biased value:** \( E = \exp - \text{Bias} \)
  - \( \exp \) is an unsigned value ranging from 1 to \( 2^{k-2} \) (\( k \) == \# bits in \( \exp \))
  - \( \text{Bias} = 2^{k-1} - 1 \)
    - Single precision: 127 (so \( \exp \): 1...254, \( E \): -126...127)
    - Double precision: 1023 (so \( \exp \): 1...2046, \( E \): -1022...1023)
  - These enable negative values for \( E \), for representing very small values

- **Significand coded with implied leading 1:** \( M = 1.\.xxx...x_2 \)
  - \( \xxx...x \): the \( n \) bits of \( \frac{\text{frac}}{\text{k}} \)
  - Minimum when 000...0 (\( M = 1.0 \))
  - Maximum when 111...1 (\( M = 2.0 - \epsilon \))
  - Get extra leading bit for “free”
Normalized Encoding Example

\[ V = (-1)^S \times M \times 2^E \]

- **Value:** float \( f = 12345.0; \)
  - \( 12345_{10} = 11000000111001_2 \)
  - \( = 1.1000000111001_2 \times 2^{13} \) (normalized form)

- **Significand:**
  \( M = 1.1000000111001 \)
  \( \text{frac} = 10000001110010000000000_2 \)

- **Exponent:** \( E = \text{exp} - \text{Bias}, \) so \( \text{exp} = E + \text{Bias} \)
  \( E = 13_{10} \)
  \( \text{Bias} = 127_{10} \)
  \( \text{exp} = 140_{10} = 10001100_2 \)

- **Result:**
  \( V = (\text{-}1)^S \times M \times 2^E = (-1)^0 \times 1.5069580078125_{10} \times 2^{13}_{10} \)
Floating Point Operations

- Unlike the representation for integers, the representation for floating-point numbers is *not exact*
Floating Point Operations: Basic Idea

\[ V = (-1)^s \times M \times 2^E \]

- \( x +_f y = \text{Round}(x + y) \)
- \( x \times_f y = \text{Round}(x \times y) \)

**Basic idea for floating point operations:**

- First, compute the exact result
- Then, *round* the result to make it fit into desired precision:
  - Possibly overflow if exponent too large
  - Possibly drop least-significant bits of significand to fit into \( \text{frac} \)
Floating Point Addition

\[ (-1)^{s_1} M_1 \ 2^{E_1} + (-1)^{s_2} M_2 \ 2^{E_2} \]

Assume \( E_1 > E_2 \)

- **Exact Result:** \((-1)^s M \ 2^E\)
  - Sign \(s\), significand \(M\):
    - Result of signed align & add
  - Exponent \(E\): \(E_1\)

- **Fixing**
  - If \(M \geq 2\), shift \(M\) right, increment \(E\)
  - if \(M < 1\), shift \(M\) left \(k\) positions, decrement \(E\) by \(k\)
  - Overflow if \(E\) out of range
  - Round \(M\) to fit \texttt{frac} precision

\( E_1 - E_2 \)

Line up the binary points
Floating Point Multiplication

\((-1)^{s_1} M_1 \ 2^{E_1} \times (-1)^{s_2} M_2 \ 2^{E_2}\)

- **Exact Result:** \((-1)^s M \ 2^E\)
  - Sign \(s\): \(s_1 \wedge s_2\)
  - Significand \(M\): \(M_1 \times M_2\)
  - Exponent \(E\): \(E_1 + E_2\)

- **Fixing**
  - If \(M \geq 2\), shift \(M\) right, increment \(E\)
  - If \(E\) out of range, overflow
  - Round \(M\) to fit frac precision
Rounding modes

- **Possible rounding modes (illustrate with dollar rounding):**

<table>
<thead>
<tr>
<th></th>
<th>$1.40</th>
<th>$1.60</th>
<th>$1.50</th>
<th>$2.50</th>
<th>–$1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round-toward-zero</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>–$1</td>
</tr>
<tr>
<td>Round-down (−∞)</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>–$2</td>
</tr>
<tr>
<td>Round-up (+∞)</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$3</td>
<td>–$1</td>
</tr>
<tr>
<td>Round-to-nearest</td>
<td>$1</td>
<td>$2</td>
<td>??</td>
<td>??</td>
<td>??</td>
</tr>
<tr>
<td>Round-to-even</td>
<td>$1</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>–$2</td>
</tr>
</tbody>
</table>

- **Round-to-even avoids statistical bias in repeated rounding.**
  - Rounds up about half the time, down about half the time.
  - Default rounding mode for IEEE floating-point
Mathematical Properties of FP Operations

- Exponent overflow yields $+\infty$ or $-\infty$

- Floats with value $+\infty$, $-\infty$, and NaN can be used in operations
  - Result usually still $+\infty$, $-\infty$, or NaN; sometimes intuitive, sometimes not

- Floating point operations are not always associative or distributive, due to rounding!
  - $(3.14 + 1e10) - 1e10 \neq 3.14 + (1e10 - 1e10)$
  - $1e20 \times (1e20 - 1e20) \neq (1e20 \times 1e20) - (1e20 \times 1e20)$
Floating Point in C

- C offers two levels of precision
  - `float`  single precision (32-bit)
  - `double` double precision (64-bit)

- `#include <math.h>` to get `INFINITY` and `NAN` constants

- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results
  - Just avoid them!
Floating Point in C

Conversions between data types:

- Casting between `int`, `float`, and `double` changes the bit representation.
- `int` → `float`
  - May be rounded; overflow not possible
- `int` → `double` or `float` → `double`
  - Exact conversion (32-bit ints; 52-bit frac + 1-bit sign)
- `long int` → `double`
  - Rounded or exact, depending on word size
- `double` or `float` → `int`
  - Truncates fractional part (rounded toward zero)
    - E.g. 1.999 -> 1, -1.99 -> -1
  - “Not defined” when out of range or NaN: generally sets to Tmin (even if the value is a very big positive)
Number Representation Really Matters

1991: Patriot missile targeting error
- clock skew due to conversion from integer to floating point

1996: Ariane 5 rocket exploded ($1 billion)
- overflow converting 64-bit floating point to 16-bit integer

2000: Y2K problem
- limited (decimal) representation: overflow, wrap-around

2038: Unix epoch rollover
- Unix epoch = seconds since 12am, January 1, 1970
- signed 32-bit integer representation rolls over to $T_{Min}$ in 2038

Other related bugs
- 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
- 1997: USS Yorktown “smart” warship stranded: divide by zero
- 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
# Floating Point and the Programmer

```c
#include <stdio.h>

int main(int argc, char* argv[]) {
 float f1 = 1.0;
 float f2 = 0.0;
 int i;
 for (i=0; i<10; i++) {
 f2 += 1.0/10.0;
 }
 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
 printf("f1 = %10.8f\n", f1);
 printf("f2 = %10.8f\n\n", f2);

 f1 = 1E30;
 f2 = 1E-30;
 float f3 = f1 + f2;
 printf ("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");

 return 0;
}
```

$ ./a.out
0x3f800000  0x3f800001
f1 = 1.000000000
f2 = 1.000000119
f1 == f3? yes
Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
  - Can get overflow/underflow, just like ints
  - Some “simple fractions” have no exact representation (e.g., 0.2)
  - Can also lose precision, unlike ints
    - “Every operation gets a slightly wrong result”

- Mathematically equivalent ways of writing an expression may compute different results
  - Violates associativity/distributivity

- **Never** test floating point values for equality!
- **Careful** when converting between ints and floats!
Many more details for the curious...

- Denormalized values – to get finer precision near zero
- Distribution of representable values
- Floating point multiplication & addition algorithms
- Rounding strategies

- We won’t be using or testing you on any of these extras in 351.
Denormalized Values

- Condition: $\text{exp} = 000...0$

- Exponent value: $E = \text{exp} - \text{Bias} + 1$ (instead of $E = \text{exp} - \text{Bias}$)

- Significand coded with implied leading 0: $M = 0 \cdot \text{xxx}...\text{x}_2$
  - $\text{xxx}...\text{x}$: bits of $\text{frac}$

- Cases
  - $\text{exp} = 000...0$, $\text{frac} = 000...0$
    - Represents value 0
    - Note distinct values: +0 and –0 (why?)
  - $\text{exp} = 000...0$, $\text{frac} \neq 000...0$
    - Numbers very close to 0.0
    - Lose precision as get smaller
    - Equispaced
Special Values

- Condition: \( \exp = 111...1 \)

- Case: \( \exp = 111...1, \frac{\text{frac}}{\text{frac}} = 000...0 \)
  - Represents value \( \infty \) (infinity)
  - Operation that overflows
  - Both positive and negative
  - E.g., \( 1.0/0.0 = -1.0/-0.0 = +\infty, \quad 1.0/-0.0 = -1.0/0.0 = -\infty \)

- Case: \( \exp = 111...1, \frac{\text{frac}}{\text{frac}} \neq 000...0 \)
  - Not-a-Number (NaN)
  - Represents case when no numeric value can be determined
  - E.g., \( \sqrt{-1}, \infty - \infty, \infty \times 0 \)
Visualization: Floating Point Encodings
Tiny Floating Point Example

- 8-bit Floating Point Representation
  - the sign bit is in the most significant bit.
  - the next four bits are the exponent, with a bias of 7.
  - the last three bits are the frac

- Same general form as IEEE Format
  - normalized, denormalized
  - representation of 0, NaN, infinity
### Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denormalized numbers</td>
<td>0</td>
<td>0000</td>
<td>000-6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0000</td>
<td>001-6</td>
<td>1/8*1/64 = 1/512</td>
<td>1/512</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0000</td>
<td>010-6</td>
<td>2/8*1/64 = 2/512</td>
<td>2/512</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0000</td>
<td>110-6</td>
<td>6/8*1/64 = 6/512</td>
<td>6/512</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0000</td>
<td>111-6</td>
<td>7/8*1/64 = 7/512</td>
<td>7/512</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0001</td>
<td>000-6</td>
<td>8/8*1/64 = 8/512</td>
<td>8/512</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0001</td>
<td>001</td>
<td>-6 9/8*1/64 = 9/512</td>
<td>9/512</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0110</td>
<td>110-1</td>
<td>14/8*1/2 = 14/16</td>
<td>14/16</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0110</td>
<td>111-1</td>
<td>15/8*1/2 = 15/16</td>
<td>15/16</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0111</td>
<td>0000</td>
<td>8/8*1 = 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0111</td>
<td>0010</td>
<td>9/8*1 = 9/8</td>
<td>9/8</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0111</td>
<td>0100</td>
<td>10/8*1 = 10/8</td>
<td>10/8</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normalized numbers</td>
<td>0</td>
<td>1110</td>
<td>110-7</td>
<td>14/8*128 = 224</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1110</td>
<td>1117</td>
<td>15/8*128 = 240</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1111</td>
<td>000n/a</td>
<td>inf</td>
<td>inf</td>
</tr>
</tbody>
</table>

- **Closest to zero**: Denormalized numbers
- **Largest denorm**: Denormalized numbers
- **Smallest norm**: Normalized numbers
- **Closest to 1 below**: Normalized numbers
- **Closest to 1 above**: Normalized numbers
- **Largest norm**: Normalized numbers
Distribution of Values

- **6-bit IEEE-like format**
  - e = 3 exponent bits
  - f = 2 fraction bits
  - Bias is $2^{3-1}-1 = 3$

- Notice how the distribution gets denser toward zero.
Distribution of Values (close-up view)

- 6-bit IEEE-like format
  - $e = 3$ exponent bits
  - $f = 2$ fraction bits
  - Bias is 3

- Denormalized
- Normalized
- Infinity
## Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00...00</td>
<td>00...01</td>
<td>$2^{-{23,52}} \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single $\approx 1.4 \times 10^{-45}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double $\approx 4.9 \times 10^{-324}$</td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>00...00</td>
<td>11...11</td>
<td>$(1.0 - \varepsilon) \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single $\approx 1.18 \times 10^{-38}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double $\approx 2.2 \times 10^{-308}$</td>
</tr>
<tr>
<td>Smallest Pos. Norm.</td>
<td>00...01</td>
<td>00...00</td>
<td>$1.0 \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Just larger than largest denormalized</td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
<td>00...00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...10</td>
<td>11...11</td>
<td>$(2.0 - \varepsilon) \times 2^{127,1023}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single $\approx 3.4 \times 10^{38}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double $\approx 1.8 \times 10^{308}$</td>
</tr>
</tbody>
</table>
Special Properties of Encoding

- **Floating point zero ($0^+$) exactly the same bits as integer zero**
  - All bits = 0

- **Can (Almost) Use Unsigned Integer Comparison**
  - Must first compare sign bits
  - Must consider $0^- = 0^+ = 0$
  - NaNs problematic
    - Will be greater than any other values
    - What should comparison yield?
  - Otherwise OK
    - Denorm vs. normalized
    - Normalized vs. infinity
Floating Point Multiplication

\((-1)^{s_1} M_1 2^{E_1} \times (-1)^{s_2} M_2 2^{E_2}\)

- **Exact Result:** \((-1)^s M 2^E\)
  - Sign s: \(s_1 \oplus s_2\) // xor of s1 and s2
  - Significand M: \(M_1 \times M_2\)
  - Exponent E: \(E_1 + E_2\)

- **Fixing**
  - If M ≥ 2, shift M right, increment E
  - If E out of range, overflow
  - Round M to fit frac precision
Floating Point Addition

\[ (-1)^{s_1} M_1 \ 2^{E_1} + (-1)^{s_2} M_2 \ 2^{E_2} \]

Assume \( E_1 > E_2 \)

**Exact Result:** \((-1)^{s} M \ 2^{E}\)
- Sign \( s \), significand \( M \):
  - Result of signed align & add
- Exponent \( E \): \( E_1 \)

**Fixing**
- If \( M \geq 2 \), shift \( M \) right, increment \( E \)
- If \( M < 1 \), shift \( M \) left \( k \) positions, decrement \( E \) by \( k \)
- Overflow if \( E \) out of range
- Round \( M \) to fit frac precision
Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
  - Sum of set of positive numbers will consistently be over- or under-estimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
  - Round so that least significant digit is even
- E.g., round to nearest hundredth
  - 1.2349999 1.23 (Less than half way)
  - 1.2350001 1.24 (Greater than half way)
  - 1.2350000 1.24 (Half way—round up)
  - 1.2450000 1.24 (Half way—round down)
# Rounding Binary Numbers

- **Binary Fractional Numbers**
  - “Half way” when bits to right of rounding position = $100\ldots_2$

- **Examples**
  - Round to nearest 1/4 (2 bits right of binary point)

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Rounded</th>
<th>Action</th>
<th>Rounded Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/32</td>
<td>10.00011₂</td>
<td>10.00₂</td>
<td>(&lt;1/2—down)</td>
<td>2</td>
</tr>
<tr>
<td>2 3/16</td>
<td>10.00110₂</td>
<td>10.01₂</td>
<td>(&gt;1/2—up)</td>
<td>2 1/4</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.11100₂</td>
<td>11.00₂</td>
<td>(1/2—up)</td>
<td>3</td>
</tr>
<tr>
<td>2 5/8</td>
<td>10.10100₂</td>
<td>10.10₂</td>
<td>(1/2—down)</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>
Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```c
int x = ...;
float f = ...;
double d = ...;
double d2 = ...;
```

Assume neither `d` nor `f` is NaN

1) `x == (int)(float) x`
2) `x == (int)(double) x`
3) `f == (float)(double) f`
4) `d == (double)(float) d`
5) `f == -(-f)`
6) `2/3 == 2/3.0`
7) `(d+d2) - d == d2`