
CSE 351: The
Hardware/Software Interface

Section 9

Lab 5

Dynamic memory allocation

In order to allocate memory that persists

across function calls, one can use malloc in C

to request heap space of a particular size

Unlike with stack-allocated memory,

malloced memory persists until it is explicitly

returned to the C library with a call to free

3/7/13 2

malloc: behind the scenes

As a process allocates memory through malloc,

the C library makes requests to the operating

system to increase the size of its data segment

 This is accomplished via calls to sbrk (see man 2

sbrk), which changes the location of the “program

break” denoting the end of the data segment

When a process invokes malloc, the C library

returns the address of an unused data block

somewhere inside of the data segment
3/7/13 3

free: behind the scenes

When a process frees a block of memory,

that block is marked as available and can

now be reused through subsequent calls to
malloc

To watch this happen in practice, try using

GDB on a program that allocates and frees a

block of memory using malloc and free. How

do the bytes immediately preceding the

block of memory change over time?
3/7/13 4

Lab 5

Memory allocator: Implement custom

versions of malloc and free called

mm_malloc and mm_free

Get experience with how dynamic memory

allocation works

Think critically about memory and pointers

3/7/13 5

Free list

The primary data structure used in lab 5 is a

free list. Entries in this list store information

about how large they are and where the next

and previous free entries are

struct BlockInfo {

 size_t sizeAndTags;

 struct BlockInfo* next;

 struct BlockInfo* prev;

};

3/7/13 6

Free list

struct BlockInfo {

 size_t sizeAndTags;

 struct BlockInfo* next;

 struct BlockInfo* prev;

};

 sizeAndTags: The upper 61 bits store the total size of
this block, the lowest bit indicates whether the block
is used, and the second-lowest bit indicates whether
the previous block is free. Only the upper 61 bits of
the size are needed since block are 8-byte aligned

 next and prev: Pointers to the next and previous free
blocks

3/7/13 7

Free block format

Note that the size

and tags are given at

both the beginning

and the end. What

benefit does this

provide?

3/7/13 8

sizeAndTags (64 bits)

next ptr (64 bits)

prev ptr (64 bits)

unused space (??? bits)

sizeAndTags (64 bits)

Used block format

Used blocks do not

store prev and next

pointers. What

should happen when

a used block is

mm_freed?

Data sections are

always padded to an

8-byte boundary
3/7/13 9

sizeAndTags (64 bits)

data (??? bits)

Free list

3/7/13 10

size: 48

used: false

prev used:

true

size: 32

used:

true

prev

used:

false

size: 32

used:

false

prev

used:

true

size: 48

used: true

prev used:

false

siz

e:

16

.

.

.

size: 88

used: false

prev used: true

Block 0 next = block 2 Block 2 next = block 5

Block 2 prev = block 0 Block 5 prev = block 2

mm_malloc

 mm_malloc takes a single argument of how much

memory to allocate

 mm_malloc scans through the free list, looking for

a large enough unused block to fulfill the

request

 If a large enough block is found, it is removed

from the free list and marked as used

 Otherwise, the program increases the size of the

heap to make space for a new block to return
3/7/13 11

mm_free

 mm_free returns a now-unused block to the

free list as the head of the list
Note that the “previous” and “next” blocks can

actually be anywhere in memory relative to this

one!

If the blocks before or after the block in

memory are also free, mm_free combines

them into a single unused block
Why combine free blocks into larger ones?

 3/7/13 12

mm_free example

3/7/13 13

size: 48

used: false

prev used:

true

size: 32

used:

true

prev

used:

false

size: 32

used:

false

prev

used:

true

size: 48

used: true

prev used:

false

siz

e:

16

.

.

.

size: 88

used: false

prev used: true

Block 0 next = block 2 Block 2 next = block 5

Block 2 prev = block 0 Block 5 prev = block 2

Let’s suppose that

we’re freeing this block

mm_free example

3/7/13 14

size: 48

used: false

prev used:

true

size: 32

used:

true

prev

used:

false

size: 32

used:

false

prev

used:

true

siz

e:

16

.

.

.

size: 88

used: false

prev used: true

Block 0 next = block 2 Block 2 next = block 5

Block 2 prev = block 0 Block 5 prev = block 2

Update used status and

set sizeAndTags in footer

size: 48

used: false

prev used:

false

mm_free example

3/7/13 15

size: 48

used: false

prev used:

true

size: 32

used:

true

prev

used:

false

size: 32

used:

false

prev

used:

true

siz

e:

16

.

.

.

size: 88

used: false

prev used: true

Block 0 next = block 2
Block 2 next = block 5

Block 2 prev = block 0
Block 5 prev = block 2

Return block to start of

free list

size: 48

used: false

prev used:

false

Block 3 next = block 0

Block 0 prev = block 3

mm_free example

3/7/13 16

size: 48

used: false

prev used:

true

size: 32

used:

true

prev

used:

false

size: 80

used: false

prev used: true

siz

e:

16

.

.

.

size: 88

used: false

prev used: true

Block 0 next = block 5

Block 5 prev = block 0

Coalesce nearby free

blocks (intermediate step

shown)

mm_free example

3/7/13 17

size: 48

used: false

prev used:

true

size: 32

used:

true

prev

used:

false

size: 80

used: false

prev used: true

siz

e:

16

.

.

.

size: 88

used: false

prev used: true

Block 0 next = block 4

Block 4 prev = block 0

Coalesce nearby free

blocks (restore next and

prev pointers)

Block 2 next = block 0

Block 0 prev = block 2

mm_free example

3/7/13 18

size: 48

used: false

prev used:

true

size: 32

used:

true

prev

used:

false

size: 80

used: false

prev used: true

siz

e:

16

.

.

.

size: 88

used: false

prev used: true

Block 0 next = block 4

Block 4 prev = block 0

All done! Free list now

starts at block 2 and ends

at block 4

Block 2 next = block 0

Block 0 prev = block 2

Words of advice

The size portion of sizeAndTags can be

accessed via the SIZE() macro. To assign the

size, bitwise “or” in the existing tags and set

the sizeAndTags field

The preceding block is the block before this

one sequentially in memory, not necessarily

the one that the prev pointer refers to

A valid solution to this assignment is not very

long, but getting it right is tricky
3/7/13 19

Words of advice

Make use of the provided functions! There is

already code for searching the free list for an

empty block, inserting into it, removing from

it, and coalescing free nodes

See searchFreeList, insertFreeBlock,

removeFreeBlock, and coalesceFreeBlock in
mm.c

3/7/13 20

Words of advice

 If you want to test mm_malloc and mm_free with

custom code, define a new Makefile rule:
malloc_test: malloc_test.o mm.o memlib.o

 $(CC) $(CFLAGS) -o malloc_test \

 malloc_test.o mm.o memlib.o

malloc_test.o: malloc_test.c mm.h memlib.h

Before calling mm_malloc for the first time, you’ll

need to invoke mem_init() from memlib.h and

then mm_init() from mm.h

Use make malloc_test to build the executable
3/7/13 21

Example program

#include "memlib.h"

#include "mm.h"

int main(int argc, char* argv[]) {

 mem_init();

 mm_init();

 int* a = (int*) mm_malloc(sizeof(int));

 mm_free(a);

 return 0;

}

3/7/13 22

Demo time

Let’s look at the provided code for the lab

If there is time at the end, investigate how

malloc and free allocate and free memory

using GDB

3/7/13 23

