
CSE 351: The 
Hardware/Software Interface

Section 6

Midterm review



Non-inclusive topic list

Addressing data in memory

Pointers, byte ordering

Bit-level operators

&, |, ^, ~, +, !, <<, >>

Integer representations

Two's complement

Floating point numbers

Representation, conversion

2/12/2014 2



Non-inclusive topic list

 Program state representation
 How registers, stack, heap, and text segment are used

 Assembly instructions
 mov, lea, add, and so forth. Moving data between registers and 

memory

 Control flow
 cmp, test, conditional jumps, and how they are used to represent 

if/then, for, and do-while

 Calling conventions
 Passing arguments in x86 versus x86-64, recursive function calls

 Arrays
 Representation in memory, accesses using assembly instructions

 Buffer overflows
 What they are, how they can be used maliciously, how to prevent 

against them

2/12/2014 3



Assembly Review

The x86 assembly instructions can be broken 
down into several basic categories

Data movement instructions

Arithmetic instructions

Control flow instructions

2/12/2014 4



Data Movement Instructions

 MOV
 Moves data between registers and memory

 PUSH
 Decrements stack pointer

 Places value on top of stack

 POP
 Increases stack pointer

 Removes value from top of stack

 LEA
 Loads address into register

 Useful for pointer operations

2/12/2014 5



Arithmetic Instructions

Most are pretty self-explanatory

ADD, SUB, IMUL, IDIV, INC, DEC

These operations can set flags:

CF: carry flag

 ZF: zero flag

 SF: sign flag

OF: overflow flag

2/12/2014 6



Control Flow Instructions

 CMP: compare two operands
 It is equivalent to a SUB command, except the result is not stored, 

only the flags are set

 CALL: call a subroutine
 Pushes the next instruction onto the stack

 Jumps to the code location specified by the operand

 RET: return from subroutine
 Pops an instruction address off the stack

 Jumps to that instruction

 LEAVE: eliminates the current stack frame
 Moves %esp to %ebp

 Pops old %ebp off stack into %ebp

2/12/2014 7



Control Flow Instructions

JMP: jump to a particular label 

Can create conditional jumps using CMP

 JNE: jump if not equal

 JE: jump if equal

 JZ: jump if zero

 JG: jump if greater than

 JGE: jump if greater than or equal to

 JL: jump if less than

 JLE: jump if less than or equal to

2/12/2014 8



Calling Conventions

Things to remember:

Arguments passed in registers for x64

 %rdi, %rsi, %rdx, %rcx, etc…

Caller-save vs. Callee-save

 Stack frame structure

 Subtract from %rsp to create space for locals

 Return address, old %rbp pushed onto stack

 (%rbp) is highest address

 (%rsp) is lowest address

2/12/2014 9



C Unions

Allows you to store data types in the same 
memory location

Example:

A variable of type Data will occupy 20 bytes
Always occupies the size of the largest member

2/12/2014 10

union Data {

int i;

float f;

char str[20];

} data;



C Unions

Members of a union are accessed using the 
same “.” operator used for structs
 If we declare a variable of type Data named 

data_union:
 data_union.i

 data_union.f

 data_union.str

Only one of the members is valid at one time
 Before using a member, your code must ensure that 

it is the “active” member

2/12/2014 11



Questions

Question time!

If you don’t have any questions, we can look 

at implementing strlen()in x64 assembly

2/12/2014 12


