
CSE 351: The
Hardware/Software Interface

Section 3

Control flow, assembly, lab 2

Advanced control flow

Let’s look at some less-common control flow

operators and review how to use them

For each control flow operator, we will

examine the assembly code and see how it

relates

The code is available on the course website

1/24/13 2

do-while (see dowhile.c)

do-while loops are useful when the exit

condition is only relevant after executing the

body of the loop once

int value;

do {

 value = computeSomething(value);

} while (value != 10);

1/24/13 3

switch-case (see switchcase.c)

 switch-case blocks are useful when there are a fixed number of values
that a variable can have, each of which should be handled separately

 How does the efficiency of a switch-case compare to if-else if-else?

int computeSomething(int value) {

 switch (value) {

 case 0:

 case 1:

 value = value + 2;

 break;

 case 2:

 value = value + 3;

 break;

 default:

 ++value;

 }

 return value;

}

1/24/13 4

switch-case (see switchcase.c)

 In this example, if value is either 0 or 1, the statement “value = value +
2;” will be executed and then “break;” will exit the block

 In the absence of “break;”, code execution will “fall through”

int computeSomething(int value) {

 switch (value) {

 case 0:

 case 1:

 value = value + 2;

 // break; <- after commenting this out, execution will proceed

 // through the “case 2” logic as well.

 case 2:

 value = value + 3;

 break;

 default:

 ++value;

 }

 return value;

}

1/24/13 5

ternaries (see ternaries.c)

Ternaries are extremely handy for expressing

concise if-else relations

Use: condition ? true-value : false-value;

int getValue(int* ptr) {

 // return 0 if ptr is NULL, otherwise

 // the value it points to.

 return ptr == NULL ? 0 : *ptr;

}

1/24/13 6

goto (see goto.c)

 gotos are useful for error handling and some other
special cases, but should otherwise be avoided if
possible (code becomes far less readable)

int computeSomething(int value) {

start:

 ++value;

 if (value % 5 == 0)

 goto end;

 else

 goto start;

end:

 return value;

}

1/24/13 7

Lab 2

Use GDB, objdump, and other tools to figure

out code words to defuse the bomb

The files involved:
 bomb: An executable bomb file. Takes code phrases

on separate lines as input

 bomb.c: Defines the entry point of the program. Calls

functions whose source code is not available to you

 defuser.txt: Contains pass phrases for each stage,

separated by newlines. Add each pass phrase here as

you discover it

1/24/13 8

GDB with lab 2

 GDB allows you to see the assembly code for
functions, view the contents of registers, and set
breakpoints to look at values at particular locations

 Sample workflow:
$ gdb --args ./bomb defuser.txt

(gdb) start # start the program (enter main method)

(gdb) b [function-or-address] # set a breakpoint

(gdb) c # continue execution of the code

(GDB will hit the breakpoint)

(gdb) info registers # look at register values

(gdb) disassemble # print assembly code

(gdb) stepi # step one instruction

(gdb) nexti # step one instruction, skipping calls

(gdb) c # start executing again

1/24/13 9

objdump and strings with lab 2

 objdump -t lets you see the symbols

contained in the bomb file, e.g. objdump -t
bomb

Which symbols correspond to functions? Which

functions are specific to the bomb code as

opposed to the GNU C library?

 strings –t x bomb will print out the

readable strings contained in the bomb file

Does the output contain anything useful?
1/24/13 10

Lab 2 notes

Each student in the class has a different

bomb; no two have the same answers

Make sure to put the pass phrases you

discover in the defuser.txt file so that you

don’t have to type them in each time

GDB has built-in help for all of its functions
 (gdb) help info

 (gdb) help disassemble

Can also search online for help with GDB
1/24/13 11

Lab 2 notes

The bomb makes use of sscanf, which parses a

string into values

As an example:
int a, b;

sscanf("123, 456", "%d, %d", &a, &b);

The first string is parsed according to the format

string of the second argument

Upon success, the values of a and b will be set

to 123 and 456, respectively

Refer to man 3 sscanf for more information
1/24/13 12

