CSE 351: The
Hardware/Software Interface

Section 3
Control flow, assembly, lab 2

1/24/13

Advanced conirol flow

Let’s look at some less-common control flow
operators and review how to use them

For each control flow operator, we will
examine the assembly code and see how it

relates
The code is available on the course website

do-while (see dowhile.c)

do-while loops are useful when the exit
condition is only relevant after executing the
body of the loop once

int value;
do {

value = computeSomething(value);
} while (value != 10);

1/24/13

switch-case (see switchcase.c)

switch-case blocks are useful when there are a fixed number of values
that a variable can have, each of which should be handled separately
How does the efficiency of a switch-case compare to if-else if-else?

int computeSomething (int value) {
switch (value) {
case 0O:
case 1:
value = value + 2;
break;
case 2:
value = value + 3;
break;
default:
++value;
}

return value;

1/24/13 4

switch-case (see switchcase.c)

In this example, if value is either 0 or 1, the statement “value = value +
2;” will be executed and then “break;” will exit the block
In the absence of “break;”, code execution will “fall through”

int computeSomething (int value) {
switch (value) {
case 0O:
case 1:
value = value + 2;
// break; <- after commenting this out, execution will proceed
// through the “case 2” logic as well.
case 2:
value = value + 3;
break;
default:
t++value;
}

return value;

}

1/24/13

ternaries (see ternaries.c)

Ternaries are extremely handy for expressing
concise if-else relations

Use: condition ? true-value : false-value;

int getValue (1nt* ptr) {
// return 0 i1f ptr is NULL, otherwise
// the value it points to.
return ptr == NULL ? 0 : *ptr;

1/24/13

goto (see goto.c)

gotos are useful for error handling and some other
special cases, but should otherwise be avoided if
possible (code becomes far less readable)

int computeSomething (int value) {
start:
++value;
if (value % 5 == 0)
goto end;
else
goto start;
end:
return value;

}

1/24/13

1/24/13

Lab 2

Use GDB, objdump, and other tools to figure
out code words to defuse the bomb

The files involved:

* bomb: An executable bomb file. Takes code phrases
on separate lines as input

* bomb.c: Defines the entry point of the program. Calls
functions whose source code is not available to you

* defuser.txt: Contains pass phrases for each stage,
separated by newlines. Add each pass phrase here as
you discover it

GDB with lab 2

GDB allows you to see the assembly code for
functions, view the contents of registers, and set
breakpoints to look at values at particular locations

Sample workflow:
$ gdb --args ./bomb defuser.txt
(gdb) start # start the program (enter main method)
(gdb) b [function-or-address] # set a breakpoint
(gdb) ¢ # continue execution of the code
(GDB will hit the breakpoint)
(gdb) info registers # look at register wvalues
() disassemble # print assembly code
(gdb) stepi # step one instruction
() nexti # step one instruction, skipping calls
()

gdb) ¢ # start executing again

1/24/13

objdump and strings with lab 2

objdump -t lets you see the symbols

contained in the bomb file, e.g. cbjdump -t
bomb
* Which symbols correspond to functions? Which

functions are specific to the bomb code as
opposed to the GNU C library?

strings -t x bomb Will print out the

readable strings contained in the bomb file

* Does the output contain anything useful?
1/24/13 10

1/24/13

Lab 2 notes

Each student in the class has a different
bomb; no two have the same answers
Make sure to put the pass phrases you
discover in the defuser.txt file so that you
don’t have to type them in each time

GDB has built-in help for all of its functions
* (gdb) help info

* (gdb) help disassemble

Can also search online for help with GDB

11

Lab 2 notes

The bomb makes use of sscanf, which parses a
string into values
As an example:

int a, b;
sscanf ("123, 456", "% sd", &a, &b);

4

The first string is parsed according to the format
string of the second argument

Upon success, the values of a and b will be set
to 123 and 456, respectively

Refertoman 3 sscanf for more information

1/24/13 12

