CSE 351: The
Hardware/Software Interface

Section 2

Integer representations, two’s
complement, and bitwise operators



1/17/13

Introduction

CE ugrad (SP14) / 5t year CSE Masters student

* Computer architecture, HW/SW Interface, digital design
* SAMPA — Approximate Computing / NPU

Experience

* TA for CSE 351 (WI13) and CSE 352 (AU13)
* Amazon

* Lockheed Martin Aeronautics

OH: Wed 2:30-3:20 in CSE 002, or by appointment

* Contact: discussion board or email (wysem@cs)



1/17/13

Integer representations

In addition to decimal notation, it’s important to be
able to understand binary and hexadecimal
representations of integers

Decimal: 3735928559
* No prefix, just the number

Binary: 0b11011110101011011011111011101111
* “Ob” prefix denotes binary notation

Hexadecimal: OxDEADBEEF
* “Ox” prefix denotes hexadecimal notation

Which notation is the most compact of the three?
Why use one over another?



Binary scale

Each digit in binary notation is either Ob0O

(zero) or Ob1 (one)

To convert from (unsigned) binary to decimal

notation, take the sum of the nth digit

multiplied by 2"

* As an example, 0b1101=1*23+1*22+0 * 21 +
1*20=8+4+0+1=13

1/17/13



1/17/13

Binary scale

To convert from decimal to binary, use a combination

of division and modulus to get each digit, tracking the
remainder

As an example, let’s convert 11 to binary

* (11/2° % 2 =1, so the first digit is Ob1. Remainderis 11 -
1*20=10

* (10/2Y) % 2=5% 2 =1, so the second digit is Ob1.
Remainderis 10-1 *21=8

* (8/2%)%2=4%2=0, so the third digit is ObO.
Remainderis8-0*2%2=8

* (8/23)%2=1%2=1, so the fourth digit is Ob1

* Finally, we have that 11 is 0b1011 in binary



Hexadecimal scale

Each digit ranges in value from 0xO (zero) to
OxF (fifteen)

* A =>ten, B => eleven, C=>twelve, D => thirteen,
E => fourteen, F => fifteen

To convert from (unsigned) hexadecimal to

decimal notation, take the sum of the nth

digit multiplied by 16"

* As an example, OXACE = OxA * 162 + OxC * 16! +
OxE * 169=10 * 256 + 12 * 16 + 14 = 2766

1/17/13



1/17/13

Hexadecimal scale

The decimal to hexadecimal conversion is the same

process as decimal to binary except with 2 instead of 16

As an example, let’s convert 3254 to hexadecimal

* (3254 / 16°) % 16 = 6, so first digit is Ox6. Remainder is 3254 -
Ox6 * 169 = 3248

* (3248 /161) % 16 =203 % 16 = 11 = 0xB, so second digit is 0xB.
Remainder is 3248 - OxB * 16 =3248 - 176 = 3072

* (3072 /16%) % 16 =12 % 16 = 12 = 0xC, so third digit is OxC

* Finally, we have that 3254 is OxCB6 in hexadecimal

If we were to write a program to convert from decimal to

binary or to hexadecimal, how could we compute the nth
digit efficiently using bitwise operators and modulus (%)?



1/17/13

Two’s complement review

In class, we established that two’s
complement is a nice format for representing
signed integers for a couple different

= 0

reasons. What were they? ., " ... ., +1
_3 1110 0001 42

1101 0010
=% 1100 o011 *3
_: 1011 0100 . 4

1010 0101
=6, 1001 0110 /*5

_ o 1000 0111 4,
-8 + 7 £



Two’s complement review

Let’s say that we want to encode -5 in binary using

two’s complement form and four bits

* With four bits, the highest bit has a negative weight of 23,

so 0b1000 = -8
*-5=-8+2+1 -
- * 3 * 92
-3 1110
=10b1011 1101
*5=4+1 ~* 1100
=0*-23+1%22+0*2%+ o 1011
1 * 20 1010
= 0b0101 -6, 1001
_7 1000

1/17/13 -8

0

0000 +1
0001 49
0010
+ 3

0011

0100 | 4

0101
0110 /+5
0111 + 6

+7 0



1/17/13

Operator review

~ is arithmetic not (flip all bits)

* Example: “0b1010 = 0b0101

l is logical not (1 if ObO, else 0)

* Example: 10b100 =0, I0b0 =1

& is bitwise and

* Example: 0b101 & 0b110 =0b100

| is bitwise or

* Example: 0b101 | Ob100 = 0b101

>> is bitwise right shift

* Example: 0b1010>>1 =0b1101, 0b0101 >> 1 =0b0010

<< is bitwise left shift
* Example: 0b1010 << 1 =0b0100, 0b1000 << 1 = 0b0000

10



1/17/13

Operator uses

Can express negation in terms of arithmetic not and

addition

* For example, ¥4+ 1 =~0b0100+1=0b1011+1=-5+1=
-4

Can use shifting, bitwise and, and logical not to

detect if a particular bit is set

* As a simple example, !!(x & (0x1 << 1)) evaluates to 1 if
the second bit it set in x and 0 otherwise

* Useful for checking if a value is negative

Can implement ternaries(x=__? _: )using

bitwise and, bitwise or, and arithmetic not

* This has wide-ranging applications in lab 1

11



Bitwise operators in practice

Is what we’re learning ever useful in
practice?
* Thankfully (or not, depending on how you look at
it), it is
* Setting bits in permission strings
For example, to choose the permissions for chmod

using octal codes
chmod 744 <file> = chmod u+rwx,g+r,0+r

1/17/13 12



12/9/10

Packing and unpacking

Let’s say that you have values x, y, and z that take 3,
4, and 1 bit to represent, respectively

Is there a way to store these three values using only
eight bits?

In C, we can define a struct that specifies the width

in bits of each value
* ...though the compiler will add padding to make the
struct a certain size if you don’t do so yourself

In Java, there are no structs, and we have to use
bitwise operators

13



Packing and unpacking (C)

#include <stdio.h>

typedef struct {

int x : 3;
int y : 4;
int z : 1;

int padding : 24;
} Flags;

int main(int argc, char* argv[]) {
Flags flags = {3, 8, 1, Ox8fffff};
printf ("sizeof (flags) is %ju and it stores 0x%x\n",

sizeof (flags), *(int*) &flags);

return 0O;

}

12/9/10



Packing and unpacking (Java)

// Pack some values into a byte
byte bitValue = 0;
bitValue
bitValue
bitValue

|= 3;
=0 <<€ 3¢
1= 1 << 7;

// Unpack the values from the byte
bitValue & 0x7;
bitValue & 0x78;
bitValue & 0x80;

byte x
byte y
byte z

// Alternatively, we could have shifted a particular

// mask instead, e.g.

12/9/10

(0x1 << 7)

instead of 0x80

15



1/17/13

Lab 1 hints

Decompose each problem into smaller problems
If you are stuck on how to solve something, write it

as a combination of functions and boolean logic
* Over time, replace each function or boolean operator
with a combination of permitted operators

Hint for detecting overflow: what is the sign of the
integer produced by adding TMax to a positive value?
What about when adding negative numbers?

Hint for counting bits: consider multiple bits at once.
40 operations isn’t enough to check each individually

16



