
CSE 351: The
Hardware/Software Interface

Section 2

Integer representations, two’s
complement, and bitwise operators

Introduction

 CE ugrad (SP14) / 5th year CSE Masters student

 Computer architecture, HW/SW Interface, digital design

 SAMPA – Approximate Computing / NPU

 Experience

 TA for CSE 351 (WI13) and CSE 352 (AU13)

 Amazon

 Lockheed Martin Aeronautics

OH: Wed 2:30-3:20 in CSE 002, or by appointment

 Contact: discussion board or email (wysem@cs)

1/17/13 2

Integer representations

 In addition to decimal notation, it’s important to be

able to understand binary and hexadecimal

representations of integers

 Decimal: 3735928559
 No prefix, just the number

 Binary: 0b11011110101011011011111011101111
 “0b” prefix denotes binary notation

 Hexadecimal: 0xDEADBEEF
 “0x” prefix denotes hexadecimal notation

Which notation is the most compact of the three?

Why use one over another?
1/17/13 3

Binary scale

Each digit in binary notation is either 0b0

(zero) or 0b1 (one)

To convert from (unsigned) binary to decimal

notation, take the sum of the nth digit

multiplied by 2n-1

As an example, 0b1101 = 1 * 23 + 1 * 22 + 0 * 21 +

1 * 20 = 8 + 4 + 0 + 1 = 13

1/17/13 4

Binary scale

 To convert from decimal to binary, use a combination
of division and modulus to get each digit, tracking the
remainder

 As an example, let’s convert 11 to binary
 (11 / 20) % 2 = 1, so the first digit is 0b1. Remainder is 11 -

1 * 20 = 10
 (10 / 21) % 2 = 5 % 2 = 1, so the second digit is 0b1.

Remainder is 10 - 1 * 21 = 8
 (8 / 22) % 2 = 4 % 2 = 0, so the third digit is 0b0.

Remainder is 8 - 0 * 22 = 8
 (8 / 23) % 2 = 1 % 2 = 1, so the fourth digit is 0b1
 Finally, we have that 11 is 0b1011 in binary

1/17/13 5

Hexadecimal scale

Each digit ranges in value from 0x0 (zero) to

0xF (fifteen)
A => ten, B => eleven, C => twelve, D => thirteen,

E => fourteen, F => fifteen

To convert from (unsigned) hexadecimal to

decimal notation, take the sum of the nth

digit multiplied by 16n-1

As an example, 0xACE = 0xA * 162 + 0xC * 161 +

0xE * 160 = 10 * 256 + 12 * 16 + 14 = 2766

1/17/13 6

Hexadecimal scale

 The decimal to hexadecimal conversion is the same
process as decimal to binary except with 2 instead of 16

 As an example, let’s convert 3254 to hexadecimal
 (3254 / 160) % 16 = 6, so first digit is 0x6. Remainder is 3254 -

0x6 * 160 = 3248
 (3248 / 161) % 16 = 203 % 16 = 11 = 0xB, so second digit is 0xB.

Remainder is 3248 - 0xB * 161 = 3248 - 176 = 3072
 (3072 / 162) % 16 = 12 % 16 = 12 = 0xC, so third digit is 0xC
 Finally, we have that 3254 is 0xCB6 in hexadecimal

 If we were to write a program to convert from decimal to
binary or to hexadecimal, how could we compute the nth
digit efficiently using bitwise operators and modulus (%)?

1/17/13 7

Two’s complement review

In class, we established that two’s

complement is a nice format for representing

signed integers for a couple different

reasons. What were they?

1/17/13 8

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7 – 8

– 7

– 6

– 5

– 4

– 3

– 2

– 1

Two’s complement review

 Let’s say that we want to encode -5 in binary using
two’s complement form and four bits
 With four bits, the highest bit has a negative weight of 23,

so 0b1000 = -8
 -5 = -8 + 2 + 1
 = 1 * -23 + 0 * 22 +
 1 * 21 + 1 * 20
 = 10b1011
 5 = 4 + 1
 = 0 * -23 + 1 * 22 + 0 * 21 +
 1 * 20
 = 0b0101

1/17/13 9

0000

0001

0011

1111

1110

1100

1011

1010

1000 0111

0110

0100

0010

0101

1001

1101

0

+ 1

+ 2

+ 3

+ 4

+ 5

+ 6

+ 7 – 8

– 7

– 6

– 5

– 4

– 3

– 2

– 1

Operator review

 ~ is arithmetic not (flip all bits)
 Example: ~0b1010 = 0b0101

 ! is logical not (1 if 0b0, else 0)
 Example: !0b100 = 0, !0b0 = 1

& is bitwise and
 Example: 0b101 & 0b110 = 0b100

 | is bitwise or
 Example: 0b101 | 0b100 = 0b101

 >> is bitwise right shift
 Example: 0b1010 >> 1 = 0b1101, 0b0101 >> 1 = 0b0010

 << is bitwise left shift
 Example: 0b1010 << 1 = 0b0100, 0b1000 << 1 = 0b0000

1/17/13 10

Operator uses

 Can express negation in terms of arithmetic not and
addition
 For example, ~4 + 1 = ~0b0100 + 1 = 0b1011 + 1 = -5 + 1 =

-4

 Can use shifting, bitwise and, and logical not to
detect if a particular bit is set
 As a simple example, !!(x & (0x1 << 1)) evaluates to 1 if

the second bit it set in x and 0 otherwise
 Useful for checking if a value is negative

 Can implement ternaries (x = __ ? __ : __) using
bitwise and, bitwise or, and arithmetic not
 This has wide-ranging applications in lab 1

1/17/13 11

Bitwise operators in practice

Is what we’re learning ever useful in

practice?

Thankfully (or not, depending on how you look at

it), it is

 Setting bits in permission strings

 For example, to choose the permissions for chmod

using octal codes

 chmod 744 <file> = chmod u+rwx,g+r,o+r

1/17/13 12

Packing and unpacking

 Let’s say that you have values x, y, and z that take 3,

4, and 1 bit to represent, respectively

 Is there a way to store these three values using only

eight bits?

 In C, we can define a struct that specifies the width

in bits of each value
 …though the compiler will add padding to make the

struct a certain size if you don’t do so yourself

 In Java, there are no structs, and we have to use

bitwise operators

12/9/10 13

Packing and unpacking (C)

#include <stdio.h>

typedef struct {

 int x : 3;

 int y : 4;

 int z : 1;

 int padding : 24;

} Flags;

int main(int argc, char* argv[]) {

 Flags flags = {3, 8, 1, 0x8fffff};

 printf("sizeof(flags) is %ju and it stores 0x%x\n",

 sizeof(flags), *(int*) &flags);

 return 0;

}

12/9/10 14

Packing and unpacking (Java)

// Pack some values into a byte

byte bitValue = 0;

bitValue |= 3;

bitValue |= 8 << 3;

bitValue |= 1 << 7;

// Unpack the values from the byte

byte x = bitValue & 0x7;

byte y = bitValue & 0x78;

byte z = bitValue & 0x80;

// Alternatively, we could have shifted a particular

// mask instead, e.g. (0x1 << 7) instead of 0x80

12/9/10 15

Lab 1 hints

 Decompose each problem into smaller problems

 If you are stuck on how to solve something, write it

as a combination of functions and boolean logic
 Over time, replace each function or boolean operator

with a combination of permitted operators

 Hint for detecting overflow: what is the sign of the

integer produced by adding TMax to a positive value?

What about when adding negative numbers?

 Hint for counting bits: consider multiple bits at once.

40 operations isn’t enough to check each individually

1/17/13 16

