351 Midterm I Winter 2012

Name:	
Email:	
Question1:	/30
Question2:	/30
Question3:	/20
Question4:	/20
Total:	/ 100

Please wait until bell to start. Please return promptly at 50 minutes (or before). If you finish within the last 5 minutes, please stay until the end as a favor to your classmates.

Closed book, closed notes.

While you wait for the exam to start (or finish), I leave you this gift:

In 1202 AD, Genghis Khan defeated the Tartars. In that same year, a now rather famous individual asked the question: "How many pairs of rabbits can be produced from a single pair in a year's time?" Assume that each pair produces a new pair of offspring every month, each new pair becomes fertile at the age of one month, and the rabbits never die. So how many rabbits are there after a year?

Question 1: (30 Points). Write the assembly (64 bit x86, System V / Unix calling conventions) for the following function:
char *strchr(char *s, char c);
This function locates the first occurrence of the character specified in the argument c, in the string s. A pointer to that character is returned, or NULL if it is not found in the string. Your function short be callable from a module other than the current source file.

Question 2: (30 points). Write the assembly function (64 bit x86, System V / Unix calling conventions) for the following C code.

static int fib(int x) { if (x <= 1) return x;		
return fib(x-1) + fib	o(-2);	
}		

Question 3: (20 points)
Write the 16 bit signed binary value for 3:
Write the 16 bit signed binary value for 14:
Now, the way that computers perform the subtract operation (A - B) is to actually convert the operation to A + NEGATION_OF(B). So let's do that.
Write the 16 bit signed binary value for -14:
Finally, write the 16 bit signed binary value for 3 - 14:
·

Question 4: (20 points).
4.a: Assume s is a pointer with the value 0x1000. s points to the string "Hello world!". What is the address of the letter 'w'?
Answer:
4.b: What is a callee saved register?
Answer:
4.c: What is the 32 bit floating point representation for -3.25? (Hint: in 32 bit FP numbers, the exponent is 8 bits).
Answer:
4.d: (True or False) in 64 bit x86 the first 2 integer arguments are passed in registers, the remainder on the stack.
4.e: (Big or Little) endian: the number 0xdeadbeef is stored in memory as byte 0: 0xef, byte 1: 0xbe, byte 2: 0xad, byte 3: 0xde.
4.f (True or False) The return value from this function is always 1.
int foo() { int $x = random()$; int $y = random()$; unsigned $ux = x$; unsigned $uy = y$; return $ux + uy == x + y$; }
4.g: The smallest signed 16 bit integer is?
Answer: