University of Washington

Memory & data
Roadmap Integers & floats
C: Java: Machine code & C
x86 assembly
car *c = malloc(sizeof(car)); | |Car ¢ = new Car(); Procedures & stacks
c->miles = 100; c.setMiles (100) ;

Arrays & structs

c->gals = 17, SeEEE O g Memory & caches
float mpg = get_mpg(c) ; float mpg = p Y
free(c) ; c.getMPG() ; {'ocesses
— = Virtual memory
Assembly get_mpg: Memory allocation
. pushqg %rbp Javavs. C
language: movqg $rsp, %rbp
PopPq $rbp
ret
l 0S:
A 4
Machine 0111010000011000 -- f
code: 100011010000010000000010 R
: 1000100111000010 .. A
110000011111101000011111 Windows 8 Mac C-d
+ 1
v 2
Computer
system:

Autumn 2013 Javavs. C 1

University of Washington

Meta-point to this lecture

m None of the data representations we are going to talk about
are guaranteed by Java

m In fact, the language simply provides an abstraction
We can't easily tell how things are really represented

m But it is important to understand an implementation of the
lower levels — useful in thinking about your program
= just like caching, etc.

Autumn 2013 Javavs. C 3

University of Washington

Java vs. C

m Reconnecting to Java
= Back to CSE143!

= But now you know a lot more about what really happens when we
execute programs

m We've learned about the following items in C; now we’ll see
what they look like for Java:
= Representation of data
= Pointers / references
= (Casting
= Function / method calls
= Runtime environment
® Translation from high-level code to machine code

Autumn 2013 Javavs. C 2

University of Washington

Data in Java

Integers, floats, doubles, pointers — same as C

® Yes, Java has pointers — they are called ‘references’ — however, Java
references are much more constrained than C’s general pointers

Null is typically represented as 0
Characters and strings

Arrays

Objects

Autumn 2013 Javavs. C 4

University of Washington University of Washington

Data in Java Data in Java
m Arrays m Arrays
= Every element initialized to 0 or null = Every element initialized to 0 or null
= Length specified in immutable field at start of array (int — 4 bytes) = Length specified in immutable field at start of array (int — 4 bytes)
= array.length returns value of this field = array.length returns value of this field
= Since it has this info, what can it do? = Every access triggers a bounds-check

= Code is added to ensure the index is within bounds

= Exception if out-of-bounds
Bounds-checking sounds slow, but:
int array[5]: int array[5]: 1. Length s likely in cache.
2. Compiler may store length in register

¢ |??|??|??|??|??| ¢ |??|??|??|??|??| 3. fCoorr:lop?lzsr.mayprovethatsomechecks
0 4 20 24 0 4 20 24 are redundant.
Java |5|00|00|00|00|00| Java |5|00|00|00|00|00|

Autumn 2013 Javavs. C 5 Autumn 2013 Javavs. C

University of Washington University of Washington

Data in Java Data structures (objects) in Java
m Characters and strings m Objects are always stored by reference, never stored inline.
= Two-byte Unicode instead of ASCII = Include complex data types (arrays, other objects, etc.) using references
= Represents most of the world’s alphabets
® String not bounded by a \0’ (null character) C e Java | class Rec {
. . A . int i; int i;
= Bounded by hidden length field at beginning of string int a[3]; Soi il = o me amifEl
struct rec *p; Rec p;
the string ‘CSE351": };
}
casan |a3[s3]a5]33[35]31]\0]
0 1 4 7 16
Java: Unicode | 6 loo[43]00]53[00]45]00[33]00[35]00[31]

S PR i
4 16 .

16 20 0 4 8 12 0

[o Ju—
'Y

Autumn 2013 Javavs. C 7 Autumn 2013

University of Washington

Pointer/reference fields and variables

m In C, we have “->” and “.” for field selection depending on
whether we have a pointer to a struct or a struct

= (*r).ais so common it becomes r->a

m InJava, all non-primitive variables are references to objects
= We always use r.a notation
= But really follow reference to r with offset to a, just like C's r->a

struct rec *r = malloc(...); r = new Rec();
struct rec r2; r2 = new Rec();
r->i = val; r.i = val;
r->a[2] = val; r.a[2] = val;
r->p = &r2; r.p = r2;

Autumn 2013 Javavs. C 9

University of Washington

Casting in C (example from Lab 5)

m We can cast any pointer into any other pointer;
just look at the same bits differently

struct BlockInfo {
int sizeAndTags;

struct BlockInfo* next; Cast b into char

struct BlockInfo* prev; pointer so that
}i you can add byte
typedef struct BlockInfo BlockInfo; °ffs|f"t WL

scaling

"
int x; Cast back into
BlockInfo *b; Blockinfo pointer
BlockInfo *newBlock; SO you can use it

as Blockinfo struct
newBlock = (BlockInfo *) ((char *) b + x);

Chlel kel |
0 4 x

8 12

Autumn 2013 Javavs. C 11

University of Washington

Pointers/References

m Pointers in C can point to any memory address

m References in Java can only point to [the starts of] objects
= And can only be dereferenced to access a field or element of that object

C|struct rec { Java| class Rec {
int i; int i;
int a[3]; int[] a = new int[3];
struct rec *p; , Rec p;
}i
struct rec* r = malloc(..); Rec r = new Rec();
some_fn(&(r.a[l])) //ptr some fn(r.a, 1) // ref, index

\ L y
BRI T 1]
4

0 16 20 0 4 8 12

Autumn 2013 Javavs. C 10

University of Washington

Type-safe casting in Java

m Can only cast compatible object references

class Boat extends Vehicle {
int propellers;

class Object { class Vehicle { }
—> int passengers;
} }

class Car extends Vehicle {
int wheels;

}

// Vehicle is a super class of Boat and Car, which are siblings
Vehicle v = new Vehicle();

Car cl = new Car();
Boat bl = new Boat();
Vehicle vl = new Car(); // ok, everything needed for Vehicle

// is also in Car
Vehicle v2 = vl; // ok, vl is already a Vehicle
Car c2 = new Boat(); // incompatible type — Boat and

0 // car age siblin?s’ Why are these
Car c3 = new Vehicle(); // wrong direction; elements in Car :
0 // not 'ign Vehicle 2wheels) prObIematIC?

Boat b2 = (Boat) v; // run-time error; Vehicle does not contain

// all elements in Boat (propellers)
Car c4 = (Car) v2; // ok, v2 started out as Car
Car c5 = (Car) bl; // incompatible types, bl is Boat

How is this implemented / enforced?

Autumn 2013 Javavs. C 12

University of Washington

Java objects

class Point { — fields
double x; /

double y;

Point () { — constructor
x =0;

y = 0;
}

P method
boolean samePlace (Point p) {

return (x == p.x) && (y == p.y);
}

}

— creation
Point p = new Point(); /

Autumn 2013 Javavs. C

Java Methods

m Static methods are just like functions.

m Instance methods
= can refer to this;
= have an implicit first parameter for this; and
= can be overridden in subclasses.
m The code to run when calling an instance method (e.g.,
p.samePlace(q)) is chosen at run-time by lookup in the vtable.

Java: C pseudo-translation:
Point p = new Point(); Point* p = calloc(l,sizeof (Point))
p->header = ...;

p->vtable = &Point_vtable;
p->vtable[0] (p) ;

return p.samePlace(q); return p->vtable[l](p, q);

Autumn 2013 Javavs. C

University of Washington

Java objects

Point object
Ps
| header vtable{ointerl % | . |

Point class vtable Vs |

| »—I\
code for Point() | 7| code for samePlace () |

v |

m vtable pointer : points to virtual method table
= |ike a jump table for instance (“virtual”) methods plus other class info

d Point object

®
header |vtab|e pointer | X

" one table per class
m header : GC info, hashing info, lock info, etc.
" no size —why?
m new : allocate space for object; zero/null fields; run constructor

autumnz013 ™ compiler actually resolves constructor like a.static method 1

University of Washington

Method dispatch

Point object
Ps

lv |

Point class vtable P |
A
\ code for Point() | 7| code for samePlace () |

®
header |vtab|e pointer | X | y |

vtabl int:
header a e{mn erl b4

d Point object

Java: C pseudo-translation:

Point p = new Point(); Point* p = calloc(l,sizeof (Point))
p->header = ...;
p->vtable = &Point_vtable;
p->vtable[0] (p) ;

return p.samePlace(q); return p->vtable[l](p, q):

Autumn 2013 Javavs. C

University of Washington

University of Washington

Subclassing Subclassing

class PtSubClass extends Point{
int aNewField;
boolean samePlace(Point p2) {
return false;
} }
void sayHi() { void sayHi() {
System.out.println("hello"); System.out.println("hello");

class PtSubClass extends Point{
int aNewField;
boolean samePlace(Point p2) {
return false;

} } } ; aNewfField tacked on at end
m Where does “aNewField” go? At end of fields of Point \
= Point fields are always in the same place, so Point code can run on vtable kl x | y | aNewFieldl

PtSubClass objects without modification.

m Where does pointer to code for two new methods go? samePlace

sayHi ’_If
= No constructor, so use default Point constructor ;’tai": f.o:)PtSubCV k)
no oin ///”/;7

constructor
V)

® To override “samePlace”, write over old pointer

= Add new pointer at end of table for new method “sayHi”

Pointer to old code for constructor i
Pointer to new code for samePlace

Autumn 2013 Javavs. C 17 Autumn 2013 Javavs. C

University of Washington

University of Washington

Dynamic dispatch Agenda

Point object

vtable pointer m Inside
| header Q | x | y |
m HW4 grades/feedback are up
icht! 1
Point vtable P | m Lab 5 due tonight! Go, go, go!

= |f I'm not in the office today, | might be in the basement labs

code for Point() | 7]code for samePlace()l

| . m Tomorrow: Review Session
PtSubclass object ® bring your own questions
header |"ta'°'e p°i"te'|x / |y |aNewField| m Final exam topics/materials
v = See past exams (website)
PtSubclass vtable P | \|< ~>I code for sayHi () | = See topic manifest (website: last Friday’s slides)
7| | m Today
code for samePlace ()
c d lati = Finish up Java
Jav?‘ pseudo-transiation:) = Brief tour of Parallel Processing
Point p = ?°?2°?; // works regardless of what p is

n H .
return p.samePlace(q); return p->vtable[l] (p, q): 351 Conclusions :{

Autumn 2013 Javavs. C 19 Autumn 2013 Javavs. C

Implementing Programming Languages

m Many choices in how to implement programming models

m We’ve talked about compilation, can also interpret
= Execute line by line in original source code
= Simpler/no compiler — less translation
" More transparent to debug — less translation

= Easier to run on different architectures — runs in a simulated
environment that exists only inside the interpreter process

= Slower and harder to optimize

= All errors at run time
m Interpreting languages has a long history

® Lisp, an early programming language, was interpreted
m Interpreters are still in common use:

= Python, Javascript, Ruby, Matlab, PHP, Perl, ...

Autumn 2013 Javavs. C 21

University of Washington

Virtual Machine Model

High-Level Language Program

Ahead-of-time
compiler

Bytecode
compiler

compile time
run time

Virtual machine
(interpreter)

Native Machine Language

Virtual Machine Language

Autumn 2013 Javavs. C 23

University of Washington

Interpreted vs. Compiled in practice

m Really a continuum, a choice to be made Compiled
= More or less work done by interpreter/compiler

Interpreted

m Java programs are usually run by a virtual machine
= JVMs interpret an intermediate language called Java bytecode
" Many JVMs compile bytecode to native machine code
= just-in-time (JIT) compilation
® Java is sometimes compiled ahead of time (AOT) like C

Autumn 2013 Javavs. C 22

University of Washington

Java bytecode

Holds pointer ‘this’

m like assembly code for JVM,

but works on all JVMs: Other arguments to method ‘
hardware-independent \ Other local variables \
m typed (unlike ASM) e
. 27 A4 N
m strong JVM protections |0|1|2|3|4| | | |n
variable table
operand stack
constant
pool

Autumn 2013 Javavs. C 24

University of Washington

Holds pointer ‘this’

JVM Operand Stack

Other arguments to method ‘

‘ Other local variables ‘

machine: e

~Z

| V.- Y
[ofafa]s]a] I T 1al

variable table
operand stack

‘i’ stands for integer,
‘a’ for reference,
‘b’ for byte, T
‘c’ for char, constant
‘d’ for double, ... pool
byteCOde: =l:i.load 1 // push 1%t argument from table onto stack
iload 2 // push 2°¢ argument from table onto stack
iadd // pop top 2 elements from stack, add together, and
////ﬂ // push result back onto stack
istore 3 // pop result and put it into third slot in table

No registers or mov 8(%ebp), %eax

i ’ . 12 (%eb; %ed
stack Ioca_‘nons, complled to x86: | ™V (%3ebp), %edx
all operations use add %edx, Seax
operand stack. mov 3%eax, -8(%ebp)

Autumn 2013 Javavs. C 25

University of Washington

Class File Format

m Every class in Java source code is compiled to its own class file

m 10 sections in the Java class file structure:
= Magic number: OxCAFEBABE (legible hex from James Gosling — Java’s inventor)
= Version of class file format: the minor and major versions of the class file
= Constant pool: set of constant values for the class
= Access flags: for example whether the class is abstract, static, final, etc.
® This class: The name of the current class
= Super class: The name of the super class
= |nterfaces: Any interfaces in the class
= Fields: Any fields in the class
= Methods: Any methods in the class
= Attributes: Any attributes of the class (for example, name of source file, etc.)

m A jar file collects together all of the class files needed for the
program, plus any additional resources (e.g. images)

Autumn 2013 Javavs. C 27

University of Washington

A Simple Java Method

Method java.lang.String getEmployeeName ()

0 aload O // "this" object is stored at 0 in the var table

1 getfield #5 <Field java.lang.String name> // takes 3 bytes
// pop an element from top of stack, retrieve its
// specified instance field and push it onto stack.
// "name" field is the fifth field of the object

4 areturn // Returns object at top of stack

0 1 4
aload_0 | getfield | 00 | 05 areturn

In the .class file: EEMEM

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

Autumn 2013 Javavs. C 26

University of Washington

Compiled from Employee.java
D H b I d class Employee extends java.lang.Object {
|Sassem e public Employee(java.lang.String,int);
public java.lang.String getEmployeeName();

Java Bytecod e) public int getEmployeeNumber();

Method Employee(java.lang.String,int)

aload 0

invokespecial #3 <Method java.lang.Object()>

aload_0

aload 1

putfield #5 <Field java.lang.String name>

aload_0

10 iload_2

11 putfield #4 <Field int idNumber>

javac Employee.java 14 aload 0

javap -c Employee 15 aload_1

16 iload_2

17 invokespecial #6 <Method void
storeData(java.lang.String, int)>

wouer O

20 return

Method java.lang.String getEmployeeName ()

0 aload 0

1 getfield #5 <Field java.lang.String name>
4 areturn

Method int getEmployeeNumber ()

0 aload_0

1 getfield #4 <Field int idNumber>
4 ireturn

Method void storeData(java.lang.String, int)

Autumn 2013 Javavs. C 28

University of Washington University of Washington

Other languages for JVMs Microsoft’s C# and .NET Framework

. m C# has similar motivations as Java
m JVMs run on so many computers that compilers have been
built to translate many other languages to Java bytecode:

= Aspect), an aspect-oriented extension of Java

m Virtual machine is called the Common Language Runtime;
Common Intermediate Language is the bytecode for C# and

i L) other languages in the .NET framework
® ColdFusion, a scripting language compiled to Java

= Clojure, a functional Lisp dialect code Voods' cole
= Groovy, a scripting language l l l
= JavaFX Script, a scripting language for web apps Compller Compller Compller
= JRuby, an implementation of Ruby
= Jython, an implementation of Python B
= Rhino, an implementation of JavaScript : SET gt g o0
= Scala, an object-oriented and functional programming language | oot e
= And many others, even including C! l
: Common | R G ey e
Rifime | e lcnbe veciedento
|

01001100101011
11010101100110
Autumn 2013 Javavs. C 29 Autumn 2013 Javavs. C

