

But before we get to integers....

- Encode a standard deck of playing cards.
- 52 cards in 4 suits
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?

Integers

- Representation of integers: unsigned and signed
- Casting
- Arithmetic and shifting
- Sign extension

Autumn 2013 Integers & Floats

Two possible representations

■ 52 cards - 52 bits with bit corresponding to card set to 1

low-order 52 bits of 64-bit word

- "One-hot" encoding
- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required

Autumn 2013 Integers & Floats 3 Autumn 2013 Integers & Floats

Two possible representations

■ 52 cards – 52 bits with bit corresponding to card set to 1

low-order 52 bits of 64-bit word

- "One-hot" encoding
- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required
- 4 bits for suit, 13 bits for card value 17 bits with two set to 1

_____<u>____</u>

- Pair of one-hot encoded values
- Easier to compare suits and values
 - Still an excessive number of bits

Can we do better?

Integers & Floats

Two better representations

Binary encoding of all 52 cards – only 6 bits needed

low-order 6 bits of a byte

- Fits in one byte
- Smaller than one-hot encodings.
- How can we make value and suit comparisons easier?
- Binary encoding of suit (2 bits) and value (4 bits) separately

Also fits in one byte, and easy to do comparisons

Two better representations

Binary encoding of all 52 cards – only 6 bits needed

low-order 6 bits of a byte

- Fits in one byte
- Smaller than one-hot encodings.
- How can we make value and suit comparisons easier?

Autumn 2013 Integers & Floats 6

Compare Card Suits

Autumn 2013

mask: a bit vector that, when bitwise ANDed with another bit vector v, turns all but the bits of interest in v to 0

```
#define SUIT MASK 0x30
int sameSuitP(char card1, char card2) {
 return (! (card1 & SUIT MASK) ^ (card2 & SUIT MASK));
   //return (card1 & SUIT MASK) == (card2 & SUIT MASK);
                                               equivalent
           SUIT MASK = 0x30 = 0 0 1 1 0 0 0 0
returns int
                                 suit
                                      value
char hand[5];
                     // represents a 5-card hand
char card1, card2;
                     // two cards to compare
card1 = hand[0];
card2 = hand[1];
if ( sameSuitP(card1, card2) ) { ... }
```

Integers & Floats

Autumn 2013 Integers & Floats 7

Compare Card Values

mask: a bit vector that, when bitwise ANDed with another bit vector v, turns all but the bits of interest in v to 0

```
char hand[5];  // represents a 5-card hand
char card1, card2;  // two cards to compare
card1 = hand[0];
card2 = hand[1];
...
if ( greaterValue(card1, card2) ) { ... }
```

Unsigned Integers

- Unsigned values are just what you expect
 - $b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + b_52^5 + ... + b_12^1 + b_02^0$ • Useful formula: $1+2+4+8+...+2^{N-1} = 2^N - 1$
- Add and subtract using the normal "carry" and "borrow" rules, just in binary.

■ How would you make *signed* integers?

Encoding Integers

- The hardware (and C) supports two flavors of integers:
 - unsigned only the non-negatives
 - signed both negatives and non-negatives
- There are only 2^w distinct bit patterns of W bits, so...
 - Can not represent all the integers
 - Unsigned values: 0 ... 2^W-1
 - Signed values: -2^{W-1} ... 2^{W-1}-1
- Reminder: terminology for binary representations

Autumn 2013

Integers & Floats

Signed Integers: Sign-and-Magnitude

- Let's do the natural thing for the positives
 - They correspond to the unsigned integers of the same value
 - Example (8 bits): 0x00 = 0, 0x01 = 1, ..., 0x7F = 127
- But, we need to let about half of them be negative
 - Use the high-order bit to indicate negative: call it the "sign bit"
 - Call this a "sign-and-magnitude" representation
 - Examples (8 bits):
 - $0x00 = 00000000_2$ is non-negative, because the sign bit is 0
 - 0x7F = 011111111₂ is non-negative
 - $0x85 = 10000101_2$ is negative
 - $0x80 = 10000000_2$ is negative...

 Autumn 2013
 Integers & Floats
 11
 Autumn 2013
 Integers & Floats
 12

Signed Integers: Sign-and-Magnitude

- How should we represent -1 in binary?
 - 10000001₂
 Use the MSB for + or -, and the other bits to give magnitude.

Most Significant Bit

Autumn 2013 Integers & Floats

Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - 10000001₂
 Use the MSB for + or -, and the other bits to give magnitude.
 (Unfortunate side effect: there are two representations of 0!)
 - Another problem: arithmetic is cumbersome.

How do we solve these problems?

Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - **10000001**,

Autumn 2013

Use the MSB for + or -, and the other bits to give magnitude. (Unfortunate side effect: there are two representations of 0!)

Integers

Two's Complement Negatives

How should we represent -1 in binary?

Autumn 2013 Integers & Floats 15 Autumn 2013 Integers & Floats

Two's Complement Negatives

How should we represent -1 in binary?

Rather than a sign bit, let MSB have same value, but negative weight.

Autumn 2013

Two's Complement Negatives

How should we represent -1 in binary?

Rather than a sign bit, let MSB have same value, but negative weight.

e.g. unsigned 1010_2 :

$$1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 10_{10}$$

2's compl. 1010_2 :
 $-1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = -6_{10}$

- -1 is represented as $1111_2 = -2^3 + (2^3 1)$ All negative integers still have MSB = 1.
- Advantages: single zero, simple arithmetic
- To get negative representation of any integer, take bitwise complement and then add one!

Two's Complement Negatives

How should we represent -1 in binary?

Rather than a sign bit, let MSB have same value, but negative weight.

e.g. unsigned 1010_2 :

$$1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 10_{10}$$

2's compl. 1010₂:

$$-1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = -6_{10}$$

Autumn 2013

Integers & Floats

4-bit Unsigned vs. Two's Complement

1 0 1 1

Integers & Floats

$$2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1$$

$$-2^{3}$$
 x 1 + 2^{2} x 0 + 2^{1} x 1 + 2^{0} x 1

4-bit Unsigned vs. Two's Complement

1 0 1 1

Two's Complement Arithmetic

- The same addition procedure works for both unsigned and two's complement integers
 - Simplifies hardware: only one algorithm for addition
 - Algorithm: simple addition, discard the highest carry bit
 - Called "modular" addition: result is sum modulo 2^w
- Examples:

4	0100	4	0100	- 4	1100
+ 3	+ 0011	- 3	+ 1101	+ 3	+ 0011
= 7	= 0111	= 1	1 0001	- 1	1111
		drop carry	= 0001		

4-bit Unsigned vs. Two's Complement

Two's Complement

- Why does it work?
 - Put another way, for all positive integers x, we want:
 - bits(x) + bits(-x) = 0 (ignoring the carry-out bit)
 - This turns out to be the bitwise complement plus one
 - What should the 8-bit representation of -1 be? 00000001

+???????? (we want whichever bit string gives the right result)

00000010 00000011 +???????? +???????? 00000000 00000000

 Autumn 2013
 Integers & Floats
 23
 Autumn 2013
 Integers & Floats
 24

Two's Complement

- Why does it work?
 - Put another way, for all positive integers x, we want:
 - bits(x) + bits(-x) = 0 (ignoring the carry-out bit)
 - This turns out to be the *bitwise complement plus one*
 - What should the 8-bit representation of -1 be?

00000001

+11111111 (we want whichever bit string gives the right result) 100000000

00000010 00000011 +???????? +????????

00000000 00000000

Autumn 2013 Integers & Floats

Unsigned & Signed Numeric Values

bits	Unsigned	Signed
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

- Signed and unsigned integers have limits.
 - If you compute a number that is too big (positive), it wraps:

6 + 4 = ? 15U + 2U = ?

If you compute a number that is too small (negative), it wraps:

-7 - 3 = ? 0U - 2U = ?

- Answers are only correct mod 2^b
- The CPU may be capable of "throwing an exception" for overflow on signed values.
 - It won't for unsigned.
- But C and Java just cruise along silently when overflow occurs... Oops.

Two's Complement

- Why does it work?
 - Put another way, for all positive integers x, we want:
 - bits(x) + bits(-x) = 0 (ignoring the carry-out bit)
 - This turns out to be the bitwise complement plus one
 - What should the 8-bit representation of -1 be?

00000001

<u>+11111111</u> (we want whichever bit string gives the right result)

100000000

00000010 00000011 +1111110 +1111101 10000000 10000000

Autumn 2013 Integers & Floats 26

Conversion Visualized

Autumn 2013 Integers & Floats 27 Autumn 2013 Integers & Floats

Overflow/Wrapping: Unsigned

addition: drop the carry bit

Modular Arithmetic

Autumn 2013

 -2^{w-1}

Values To Remember

- Unsigned Values
 - UMin 0
 - **•** 000...0
 - UMax **111...1**
- $2^{w} 1$
- Two's Complement Values
 - TMin
 - **100...0**
 - TMax $2^{w-1}-1$ **•** 011...1
 - Negative one
 - 111...1 0xF...F

Values for W = 32

	Decimal		He	ĸ		Binary
UMax	4,294,967,296	FF	FF	FF	FF	11111111 11111111 11111111 11111111
TMax	2,147,483,647	7F	FF	FF	FF	01111111 11111111 11111111 11111111
TMin	-2,147,483,648	80	00	00	00	10000000 00000000 00000000 00000000
-1	-1	FF	FF	FF	FF	11111111 11111111 11111111 11111111
0	0	00	00	00	00	00000000 00000000 00000000 00000000

Overflow/Wrapping: Two's Complement

addition: drop the carry bit

Modular Arithmetic

Signed vs. Unsigned in C

Constants

Autumn 2013

- By default are considered to be signed integers
- Use "U" suffix to force unsigned:
 - 0U, 4294967259U

Signed vs. Unsigned in C

Casting

```
int tx, ty;unsigned ux, uy;
```

Explicit casting between signed & unsigned:

```
• tx = (int) ux;
• uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and function calls:

```
ux = ux;
uy = ty;
```

 The gcc flag -Wsign-conversion produces warnings for implicit casts, but -Wall does not!

- How does casting between signed and unsigned work?
- What values are going to be produced?

Autumn 2013 Integers & Floats

Casting Surprises

- Expression Evaluation
 - If you mix unsigned and signed in a single expression, then signed values are implicitly cast to unsigned.
 - Including comparison operations <, >, ==, <=, >=
 - **Examples for** W = 32**:** TMIN = -2,147,483,648 TMAX = 2,147,483,647

■ Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483648	>	signed
2147483647U	-2147483648	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Signed vs. Unsigned in C

Casting

Autumn 2013

```
int tx, ty;unsigned ux, uy;
```

Explicit casting between signed & unsigned:

```
• tx = (int) ux;
• uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and function calls:

```
• tx = ux;
• uy = ty;
```

 The gcc flag -Wsign-conversion produces warnings for implicit casts, but -Wall does not!

- How does casting between signed and unsigned work?
- What values are going to be produced?
 - Bits are unchanged, just interpreted differently!

University of Washingto

Sign Extension

What happens if you convert a 32-bit signed integer to a 64-bit signed integer?

Autumn 2013 Integers & Floats 35 Autumn 2013 Integers & Floats 3

Sign Extension

■ Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

- Make k copies of sign bit:

Autumn 2013

Sign Extension

0010 4-bit 2

00000010 8-bit 2

1100 4-bit -4

????1100 8-bit -4

8-bit representations

00001001

10000001

11111111

00100111

C: casting between unsigned and signed just reinterprets the same bits.

tumn 2013 Integers & Floats

Sign Extension

0010 4-bit 2

00000010 8-bit 2

1100 4-bit -4

00001100 8-bit 12

Sign Extension

0010 4-bit 2
0000010 8-bit 2
1100 4-bit -4
10001100 8-bit -116

Sign Extension

 Autumn 2013
 Integers & Floats
 41
 Autumn 2013
 Integers & Floats
 42

Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension (Java too)

short int x = 12345;
int ix = (int) x;
short int y = -12345;
int iy = (int) y;

	Decimal	Hex	Binary
x	12345	30 39	00110000 01101101
ix	12345	00 00 30 39	00000000 00000000 00110000 01101101
У	-12345	CF C7	11001111 11000111
iy	-12345	FF FF CF C7	1111111 11111111 11001111 11000111

Shift Operations

- Left shift: x << y
 - Shift bit vector x left by y positions
 - Throw away extra bits on left
 - Fill with 0s on right
- Right shift: x >> y
 - Shift bit-vector x right by y positions
 - Throw away extra bits on right
 - Logical shift (for unsigned values)
 - Fill with 0s on left
 - Arithmetic shift (for signed values)
 - · Replicate most significant bit on left
 - Maintains sign of x

Argument x	01100010
<< 3	00010 <i>000</i>
Logical >> 2	00011000
Arithmetic >> 2	00011000

10100010
00010 <i>000</i>
00101000
<i>11</i> 101000

The behavior of >> in C depends on the compiler! It is *arithmetic* shift right in GCC. Java: >>> is logical shift right; >> is arithmetic shift right.

 Autumn 2013
 Integers & Floats
 43
 Autumn 2013
 Integers & Floats
 44

Shift Operations

- Left shift: x << y
 - Shift bit vector x left by y positions
 - Throw away extra bits on left
 - Fill with 0s on right
- Right shift: x >> y
 - Shift bit-vector x right by y positions
 - Throw away extra bits on right
 - Logical shift (for unsigned values)
 - Fill with 0s on left
 - Arithmetic shift (for signed values)
 - Replicate most significant bit on left
 - Maintains sign of x
 - · Why is this useful?

Argument x	01100010
<< 3	
Logical >> 2	
Arithmetic >> 2	

Argument x	10100010
<< 3	
Logical >> 2	
Arithmetic >> 2	

x >> 9?

The behavior of >> in C depends on the compiler! It is arithmetic shift right in GCC. Java: >>> is logical shift right; >> is arithmetic shift right.

Autumn 2013

Integers & Floats

What happens when...

x >> n: divide by 2ⁿ

x << m: multiply by 2^m

Shifting and Arithmetic

What happens when...

 $\mathbf{x} >> n$?

x << m?</p>

Autumn 2013

faster than general multiple or divide operations

Autumn 2013 Integers & Floats Autumn 2013 Integers & Floats

Shifting and Arithmetic

clarification from Mon.: shifts by n < 0 or n >= word size are undefined

Using Shifts and Masks

- Extract the 2nd most significant byte of an integer:
 - First shift, then mask: (x >> 16) & 0xFF

х	01100001 01100010 01100011 01100100
x >> 16	00000000 00000000 01100001 01100010
/ v >> 16) 9 0vFF	00000000 00000000 00000000 11111111
(x >> 16) & 0xFF	00000000 00000000 00000000 01100010

Extract the sign bit of a signed integer?

Using Shifts and Masks

Extract the 2nd most significant byte of an integer?

х	01100001 01100010 01100011 01100100

Autumn 2013 Integers & Floats 50

Using Shifts and Masks

- Extract the 2nd most significant byte of an integer:
 - First shift, then mask: (x >> 16) & 0xFF

х	01100001 01100010 01100011 01100100
x >> 16	00000000 00000000 01100001 01100010
(x >> 16) & 0xFF	00000000 00000000 00000000 11111111
	00000000 00000000 00000000 01100010

- Extract the sign bit of a signed integer:
 - (x>> 31) & 1 need the "& 1" to clear out all other bits except LSB
- Conditionals as Boolean expressions (assuming x is 0 or 1)
 - if (x) a=y else a=z; which is the same as a = x ? y : z;
 - Can be re-written (assuming arithmetic right shift) as: a = (((x << 31) >> 31) & y) | (((!x) << 31) >> 31) & z);

 Autumn 2013
 Integers & Floats
 51
 Autumn 2013
 Integers & Floats
 55

Multiplication

- What do you get when you multiply 9 x 9?
- What about 2³⁰ x 3?
- $2^{30} \times 5$?
- -2³¹ x -2³¹?

Autumn 2013 Integers & Floats

Power-of-2 Multiply with Shift

- Operation
 - $\mathbf{u} << \mathbf{k}$ gives $\mathbf{u} * \mathbf{2}^k$
 - Both signed and unsigned

True Product: w+k bits

Discard k bits: w bits

Operands: w bits

Examples

- u << 3 == u * 8 • u << 5 - u << 3 == u * 24
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

 $UMult_{\omega}(u, v) = u \cdot v \mod 2^{\omega}$

Autumn 2013 Integers & Floats 54

Code Security Example

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void* user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
```

Autumn 2013 Integers & Floats 55 Autumn 2013 Integers & Floats 5

Malicious Usage /* Declaration of library function memcpy */
void* memcpy(void* dest, void* src, size_t n);

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];
/* Copy at most maxlen bytes from kernel region to user buffer */
int copy from kernel(void* user dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;</pre>
    memcpy(user dest, kbuf, len);
    return len;
```

```
#define MSIZE 528
void getstuff() {
    char mybuf[MSIZE];
    copy from kernel(mybuf, -MSIZE);
```

Integers & Floats Autumn 2013

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

Floating point topics

- Background: fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Autumn 2013 Integers & Floats

Fractional Binary Numbers

Value Representation

101.112 • 5 and 3/4 10.1112 2 and 7/8 0.1011112 **47/64**

Observations

- Shift left = multiply by power of 2
- Shift right = divide by power of 2
- Numbers of the form 0.111111..., are just below 1.0

Limitations:

- Exact representation possible only for numbers of the form x * 2^y
- Other rational numbers have repeating bit representations

• $1/3 = 0.3333333..._{10} = 0.01010101[01]..._{2}$

Integers & Floats Autumn 2013 Integers & Floats Autumn 2013

Fixed Point Representation

Implied binary point. Examples:

#1: the binary point is between bits 2 and 3 $b_7 b_6 b_5 b_4 b_3$ [.] $b_2 b_1 b_0$ #2: the binary point is between bits 4 and 5 $b_7 b_6 b_5$ [.] $b_4 b_3 b_2 b_1 b_0$

Same hardware as for integer arithmetic.

#3: integers! the binary point is after bit 0 $b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0$ [.]

Fixed point = fixed range and fixed precision

- range: difference between largest and smallest numbers possible
- precision: smallest possible difference between any two numbers

Autumn 2013 Integers & Floats

Floating Point Representation

Numerical form:

$$V_{10} = (-1)^{S} * M * 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range [1.0,2.0)
- Exponent E weights value by a (possibly negative) power of two

IEEE Floating Point

Analogous to scientific notation

■ 12000000 1.2 x 10⁷ C: 1.2e7 ■ 0.0000012 1.2 x 10⁻⁶ C: 1.2e-6

■ IEEE Standard 754 used by all major CPUs today

Driven by numerical concerns

- Rounding, overflow, underflow
- Numerically well-behaved, but hard to make fast in hardware

Autumn 2013 Integers & Floats 62

Floating Point Representation

Numerical form:

$$V_{10} = (-1)^{5} * M * 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range [1.0,2.0)
- Exponent E weights value by a (possibly negative) power of two

Representation in memory:

- MSB s is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

Precisions

■ Single precision: 32 bits

■ Double precision: 64 bits

■ Finite representation means not all values can be represented exactly. Some will be approximated.

Autumn 2013 Integers & Floats

Normalization and Special Values

$$V = (-1)^{S} * M * 2^{E}$$
 s exp frac

- "Normalized" = M has the form 1.xxxxx
 - As in scientific notation, but in binary
 - 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it.
- Special values:
 - zero: s == 0 exp == 00...0 frac == 00...0
 - +\infty, -\infty: exp == 11...1 frac == 00...0

$$1.0/0.0 = -1.0/-0.0 = +\infty$$
, $1.0/-0.0 = -1.0/0.0 = -\infty$

- NaN ("Not a Number"): exp == 11...1 frac!=00...0
 Results from operations with undefined result: sqrt(-1), $\infty \infty$, $\infty * 0$, etc.
- note: exp=11...1 and exp=00...0 are reserved, limiting exp range...

Normalization and Special Values

$$V = (-1)^{S} * M * 2^{E}$$
 s exp frac

- "Normalized" = M has the form 1.xxxxx
 - As in scientific notation, but in binary
 - 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it
- How do we represent 0.0? Or special / undefined values like 1.0/0.0?

Autumn 2013 Integers & Floats 66

Floating Point Operations: Basic Idea

$$V = (-1)^{S} * M * 2^{E}$$
 s exp frac

- $\mathbf{x} +_{\mathbf{f}} \mathbf{y} = Round(\mathbf{x} + \mathbf{y})$
- $\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = Round(\mathbf{x} \times \mathbf{y})$
- Basic idea for floating point operations:
 - First, compute the exact result
 - Then, *round* the result to make it fit into desired precision:
 - Possibly overflow if exponent too large
 - Possibly drop least-significant bits of significand to fit into frac

67 Autumn 2013 Integers & Floats 68

Floating Point Multiplication

$$(-1)^{s1} M1 2^{E1} * (-1)^{s2} M2 2^{E2}$$

■ Exact Result: (-1)^s M 2^E

Sign s: s1 ^ s2
 Significand M: M1 * M2
 Exponent E: E1 + E2

- Fixing
 - If $M \ge 2$, shift M right, increment E
 - If E out of range, overflow
 - Round *M* to fit **frac** precision

Autumn 2013 Integers & Floats

Rounding modes

Possible rounding modes (illustrate with dollar rounding):

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Round-toward-zero	\$1	\$1	\$1	\$2	-\$1
■ Round-down (-∞)	\$1	\$1	\$1	\$2	-\$2
■ Round-up (+∞)	\$2	\$2	\$2	\$3	-\$1
Round-to-nearest	\$1	\$2	??	??	??
Round-to-even	\$1	\$2	\$2	\$2	- \$2

- Round-to-even avoids statistical bias in repeated rounding.
 - Rounds up about half the time, down about half the time.
 - Default rounding mode for IEEE floating-point

Floating Point Addition

$$(-1)^{s1}$$
 M1 2^{E1} + $(-1)^{s2}$ M2 2^{E2}
Assume $E1 > E2$

- Exact Result: (-1)^s M 2^E
 - Sign s, significand M:
 - · Result of signed align & add
 - Exponent *E*: *E1*

- Fixing
 - If $M \ge 2$, shift M right, increment E
 - if *M* < 1, shift *M* left *k* positions, decrement *E* by *k*
 - Overflow if E out of range
 - Round M to fit frac precision

Autumn 2013 Integers & Floats 70

Mathematical Properties of FP Operations

- Exponent overflow yields +∞ or -∞
- Floats with value $+\infty$, $-\infty$, and NaN can be used in operations
 - Result usually still $+\infty$, $-\infty$, or NaN; sometimes intuitive, sometimes not
- Floating point operations are not always associative or distributive, due to rounding!
 - **(**3.14 + 1e10) 1e10 != 3.14 + (1e10 1e10)
 - 1e20 * (1e20 1e20) != (1e20 * 1e20) (1e20 * 1e20)

 Autumn 2013
 Integers & Floats
 71
 Autumn 2013
 Integers & Floats
 72

Floating Point in C

C offers two levels of precision

float single precision (32-bit) double double precision (64-bit)

- #include <math.h> to get INFINITY and NAN constants
- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results
 - Just avoid them!

Autumn 2013 Integers & Floats

Number Representation Really Matters

- 1991: Patriot missile targeting error
 - clock skew due to conversion from integer to floating point
- 1996: Ariane 5 rocket exploded (\$1 billion)
 - overflow converting 64-bit floating point to 16-bit integer
- 2000: Y2K problem
 - limited (decimal) representation: overflow, wrap-around
- 2038: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to TMin in 2038
- other related bugs
 - 1994: Intel Pentium FDIV (floating point division) HW bug (\$475 million)
 - 1997: USS Yorktown "smart" warship stranded: divide by zero
 - 1998: Mars Climate Orbiter crashed: unit mismatch (\$193 million)

Floating Point in C

Conversions between data types:

- Casting between int, float, and double changes the bit representation.
- int → float
 - May be rounded; overflow not possible
- int → double or float → double
 - Exact conversion (32-bit ints; 52-bit frac + 1-bit sign)
- long int → double
 - Rounded or exact, depending on word size
- double or float → int
 - Truncates fractional part (rounded toward zero)
 - Not defined when out of range or NaN: generally sets to Tmin

Autumn 2013 Integers & Floats 74

Floating Point and the Programmer

```
#include <stdio.h>
int main(int argc, char* argv[]) {
  float f1 = 1.0;
  float f2 = 0.0;
 int i;
  for ( i=0; i<10; i++ ) {
   f2 += 1.0/10.0;
 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
                                                         $ ./a.out
                                                         0x3f800000 0x3f800001
  printf("f1 = %10.8f\n", f1);
                                                         f1 = 1.000000000
 printf("f2 = %10.8f\n\n", f2);
                                                         f2 = 1.000000119
  f1 = 1E30;
                                                         f1 == f3? yes
  f2 = 1E-30;
  float f3 = f1 + f2;
  printf ("f1 == f3? s\n", f1 == f3 ? "yes" : "no" );
  return 0;
```

 Autumn 2013
 Integers & Floats
 75
 Autumn 2013
 Integers & Floats
 76

Memory Referencing Bug

```
double fun(int i)
{
  volatile double d[1] = {3.14};
  volatile long int a[2];
  a[i] = 1073741824; /* Possibly out of bounds */
  return d[0];
}
```

Explanation:

Autumn 2013

Memory Referencing Bug (Revisited)

```
double fun(int i)
{
  volatile double d[1] = {3.14};
  volatile long int a[2];
  a[i] = 1073741824; /* Possibly out of bounds */
  return d[0];
}
```

Representing 3.14 as a Double FP Number

- **3.14** = 11.0010 0011 1101 0111 0000 1010 000...
- (-1)^s M 2^E
 - \blacksquare S = 0 encoded as 0
 - M = 1.1001 0001 1110 1011 1000 0101 000.... (leading 1 left out)
 - E = 1 encoded as 1024 (with bias)

```
        s
        exp
        (11)
        frac (first 20 bits)

        0
        100 0000 0000
        1001 0001 1110 1011 1000
```

```
frac (the other 32 bits)
0101 0000 ...
```

Integers & Floats

Memory Referencing Bug (Revisited)

```
double fun(int i)
  volatile double d[1] = {3.14};
  volatile long int a[2];
  a[i] = 1073741824; /* Possibly out of bounds */
  return d[0];
fun(0) \rightarrow 3.14
fun(1) \rightarrow 3.14
fun(2) -> 3.1399998664856
fun(3) \rightarrow 2.00000061035156
fun(4) -> 3.14, then segmentation fault
Saved State
                                                       4
     d7 ... d4 0100 0000 0000 1001 0001 1110 1011 1000
                                                            Location
              0100 0000 0000 0000 0000 0000 0000 0000
                                                            accessed
        a[1]
                                                            by fun(i)
        a[0]
```

Autumn 2013

Autumn 2013

tegers & Floats

80

Memory Referencing Bug (Revisited)

```
double fun(int i)
{
  volatile double d[1] = {3.14};
  volatile long int a[2];
  a[i] = 1073741824; /* Possibly out of bounds */
  return d[0];
}
```


Autumn 2013 Integers & Floats 83 Autumn 2013 Integers & Floats 5

Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some "simple fractions" have no exact representation (e.g., 0.2)
 - Can also lose precision, unlike ints
 - "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may compute different results
 - Violates associativity/distributivity
- Never test floating point values for equality!
- Careful when converting between ints and floats!

Autumn 2013 Integers & Floats 8

Many more details for the curious...

- Exponent bias
- Denormalized values to get finer precision near zero
- Distribution of representable values
- Floating point multiplication & addition algorithms
- Rounding strategies
- We won't be using or testing you on any of these extras in 351.

Normalized Values

$$V = (-1)^{S} * M * 2^{E}$$
 s exp frac

- Condition: $exp \neq 000...0$ and $exp \neq 111...1$
- Exponent coded as biased value: E = exp Bias
 - exp is an unsigned value ranging from 1 to 2^{k} -2 (k == # bits in exp)
 - $Bias = 2^{k-1} 1$
 - Single precision: 127 (so *exp*: 1...254, *E*: -126...127)
 - Double precision: 1023 (so exp: 1...2046, E: -1022...1023)
 - These enable negative values for E, for representing very small values
- Significand coded with implied leading 1: M = 1.xxx...x,
 - xxx...x: the n bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when 111...1 $(M = 2.0 \varepsilon)$
 - Get extra leading bit for "free"

Autumn 2013 Integers & Floats

Denormalized Values

- **■** Condition: **exp** = 000...0
- Exponent value: E = exp Bias + 1 (instead of E = exp Bias)
- Significand coded with implied leading 0: *M* = 0 . xxx...x₂
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents value 0
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, $frac \neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

Normalized Encoding Example

$$V = (-1)^{S} * M * 2^{E}$$
 s exp frac

- Value: float f = 12345.0;
 - 12345₁₀ = 11000000111001₂
 = 1.1000000111001₂ x 2¹³ (normalized form)

Significand:

■ Exponent: E = exp - Bias, so exp = E + Bias

```
E = 13

Bias = 127

exp = 140 = 10001100_2
```

Result:

Autumn 2013 Integers & Floats

Special Values

- **■** Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -1.0/0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)

Autumn 2013

- Represents case when no numeric value can be determined
- E.g., sqrt(-1), $\infty \infty$, $\infty * 0$

Visualization: Floating Point Encodings

Autumn 2013 Integers & Floats

Dynamic Range (Positive Only)

	s exp frac	E Value	
Denormalized numbers	0 0000 000 0 0000 001 0 0000 010 0 0000 110		closest to zero
	0 0000 111	-6 7/8*1/64 = 7/512	largest denorm
Normalized numbers	0 0001 001 0 0110 110 0 0110 111 0 0111 000	$ \begin{array}{rcl} -1 & 14/8*1/2 &=& 14/16 \\ -1 & 15/8*1/2 &=& 15/16 \\ 0 & 8/8*1 &=& 1 \end{array} $	smallest norm
Tidilibers		0 9/8*1 = 9/8 0 10/8*1 = 10/8 14/8*128 = 224 7 15/8*128 = 240 n/a inf	largest norm

Tiny Floating Point Example

8-bit Floating Point Representation

- the sign bit is in the most significant bit.
 - the next four bits are the exponent, with a bias of 7.
 - the last three bits are the frac

■ Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Autumn 2013 Integers & Floats 90

Distribution of Values

■ 6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Autumn 2013 Integers & Floats 91 Autumn 2013 Integers & Floats 9

Distribution of Values (close-up view)

■ 6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

exp

frac

2

Autumn 2013 Integers & Floats

Special Properties of Encoding

- Floating point zero (0⁺) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^- = 0^+ = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Interesting Numbers

{single, double}

Description	exp	frac	Numeric Value
■ Zero	0000	0000	0.0
 Smallest Pos. Denorm. Single ≈ 1.4 * 10⁻⁴⁵ Double ≈ 4.9 * 10⁻³²⁴ 	0000	0001	2- {23,52} * 2- {126,1022}
 Largest Denormalized Single ≈ 1.18 * 10⁻³⁸ Double ≈ 2.2 * 10⁻³⁰⁸ 	0000	1111	$(1.0 - \varepsilon) * 2^{-\{126,1022\}}$
Smallest Pos. Norm.Just larger than largest de	0001 enormalized		1.0 * 2- {126,1022}
■ One	0111	0000	1.0
 Largest Normalized Single ≈ 3.4 * 10³⁸ Double ≈ 1.8 * 10³⁰⁸ 	1110	1111	$(2.0 - \varepsilon) * 2^{\{127,1023\}}$

Autumn 2013 Integers & Floats 94

Floating Point Multiplication

(-1)^{s1} M1 2^{E1} * (-1)^{s2} M2 2^{E2}

■ Exact Result: (-1)^s M 2^E

■ Sign s: s1 ^ s2 // xor of s1 and s2

Significand M: M1 * M2Exponent E: E1 + E2

- Fixing
 - If M ≥ 2, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision

 Autumn 2013
 Integers & Floats
 95
 Autumn 2013
 Integers & Floats
 96

Floating Point Addition

 $(-1)^{s1}$ M1 2^{E1} + $(-1)^{s2}$ M2 2^{E2} Assume E1 > E2

- Exact Result: (-1)^s M 2^E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1

Fixing

- If M ≥ 2, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

Autumn 2013 Integers & Floats

Rounding Binary Numbers

Binary Fractional Numbers

■ "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.101002	10.102	(1/2—down)	2 1/2

Autumn 2013 Integers & Floats 99

Closer Look at Round-To-Even

■ Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way—round up)
1.2450000	1.24	(Half way—round down)

Autumn 2013 Integers & Floats