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Memory & data
Road ma p Integers & floats Intege rs
C: Java: Machine code & C
’ . x86 assembly . ) . .
car *c = malloc(sizeof(car)); | |Car c = new Car(); Procedures & stacks m Representation of integers: unsigned and signed
c->miles = 100; c.setMiles (100) ; .
c->gals = 17; c.setGals (17) ; ﬁ/lr(:_anzcs)r% :rcl;tlfes ] Castlng
float mpg = get_mpg(c) ; float mpg = . . gy
free(c) : T . getMpG () ; (Plt.*otceslses m Arithmetic and shifting
~ / iIrtual memory . .
Assembly get_mpg: Memory allocation u Slgn extension
. pushq  %rbp Javavs. C
language: movq $rsp, $rbp
I.x;l;q %rbp
ret
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system:
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But before we get to integers.... Two possible representations
m Encode a standard deck of playing cards. m 52 cards — 52 bits with bit corresponding to card set to 1
m 52 cards in 4 suits
= How do we encode suits, face cards? low-order 52 bits of 64-bit word

= What operations do we want to make easy to implement? " “One-hot” encoding

= Which is the higher value card?
" Are they the same suit?

= Drawbacks:
= Hard to compare values and suits
= Large number of bits required
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Two possible representations

m 52 cards — 52 bits with bit corresponding to card set to 1

low-order 52 bits of 64-bit word

= “One-hot” encoding

= Drawbacks:
= Hard to compare values and suits
= Large number of bits required

m 4 bits for suit, 13 bits for card value — 17 bits with two set to 1

= Pair of one-hot encoded values
= Easier to compare suits and values
= Still an excessive number of bits

m Can we do better?
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Two better representations

m Binary encoding of all 52 cards — only 6 bits needed

low-order 6 bits of a byte

® Fits in one byte
= Smaller than one-hot encodings.

" How can we make value and suit comparisons easier?

m Binary encoding of suit (2 bits) and value (4 bits) separately

suit value

= Also fits in one byte, and easy to do comparisons

Autumn 2013 Integers & Floats 7
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Two better representations

m Binary encoding of all 52 cards — only 6 bits needed

low-order 6 bits of a byte

® Fits in one byte
= Smaller than one-hot encodings.
" How can we make value and suit comparisons easier?

Autumn 2013 Integers & Floats 6
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mask: a bit vector that, when bitwise
ANDed with another bit vector v, turns
all but the bits of interest in vto 0

Compare Card Suits

#define SUIT MASK 0x30

int sameSuitP (char cardl, char card2) ({
return (! (cardl & SUIT MASK) * (card2 & SUIT MASK))
//return (cardl & SUIT MASK) == (card2 & SUIT MASK);

returns int | suiT MASK=0x30= |ofof1]1]ofo]0o]0 |\L equivalent

suit value

char hand[5];
char cardl, card2; // two cards to compare
cardl = hand[0];
card2 = hand[1l];

// represents a 5-card hand

if ( sameSuitP(cardl, card2) ) { ... }
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mask: a bit vector that, when bitwise
ANDed with another bit vector v, turns
all but the bits of interest in v to 0

Compare Card Values

works even if value
is stored in high bits
int greaterValue (char cardl, char car
return ((unsigned int) (cardl & VALUE MASK) >
(unsigned int) (card2 & VALUE MASK)) ;

#define VALUE MASK O0xOF

VALUE_MASK =0x0F =|0]o]ofof2f1]1]1]

suit value

char hand[5];
char cardl, card2; // two cards to compare
cardl = hand[0];
card2 = hand[1];

// represents a 5-card hand

if ( greaterValue(cardl, card2) ) { ... }
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Unsigned Integers

m Unsigned values are just what you expect
= b,bgbsb,byb,b by = b,27 + be26 + b25 + ... + b, 21 + b2
= Useful formula: 1+2+4+8+...+2N1=2N-1

m Add and subtract using the normal 00111111 63
“carry” and “borrow” rules, just in binary, | 20001000} |+_8
01000111 | | 71

m How would you make signed integers?

Autumn 2013 Integers & Floats 1
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Encoding Integers

m The hardware (and C) supports two flavors of integers:
® unsigned — only the non-negatives
® signed — both negatives and non-negatives

m There are only 2% distinct bit patterns of W bits, so...
® Can not represent all the integers
= Unsigned values: 0 ... 2"-1
= Signed values: -2W1 .., 2W-1-1

m Reminder: terminology for binary representations

“Most-significant” or
“high-order” bit(s)

“Least-significant” or
“low-order” bit(s)

0110010110101001

Autumn 2013 Integers & Floats 10

University of Washington

Signed Integers: Sign-and-Magnitude

m Let's do the natural thing for the positives
® They correspond to the unsigned integers of the same value
= Example (8 bits): 0x00 = 0, 0x01 =1, ..., Ox7F = 127
m But, we need to let about half of them be negative
= Use the high-order bit to indicate negative: call it the “sign bit”
= Call this a “sign-and-magnitude” representation
= Examples (8 bits):
= 0x00 = 00000000, is non-negative, because the sign bit is 0
= Ox7F =01111111, is non-negative
= 0x85 =10000101, is negative
= 0x80 = 10000000, is negative...
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Signed Integers: Sign-and-Magnitude Sign-and-Magnitude Negatives
m How should we represent -1 in binary? m How should we represent -1 in binary?
* 10000001, * 10000001,
Use the MSB for + or -, and the other bits to give magnitude. Use the MSB for + or -, and the other bits to give magnitude.

(Unfortunate side effect: there are two representations of 0!)
Most Significant Bit

1111
1110
1101
1100

0000
0001
0010
0011

1010
1001
1000

0111
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Sign-and-Magnitude Negatives Two’s Complement Negatives
m How should we represent -1 in binary? = How should we represent -1 in binary?

= 10000001,
Use the MSB for + or -, and the other bits to give magnitude.
(Unfortunate side effect: there are two representations of 0!)

= Another problem: arithmetic is cumbersome.

» Example: 7 0
4-31=4+(-3)
-5 +2
0100 _4 ‘3
+1011
1111

How do we solve these problems? —0
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Two’s Complement Negatives Two’s Complement Negatives
m How should we represent -1 in binary? m How should we represent -1 in binary?
Rather than a sign bit, let MSB have same value, but negative weight. Rather than a sign bit, let MSB have same value, but negative weight.
b, ,=1adds -2*! to the value. fori<w-1: b;=1adds +2' to the value. b, ,=1adds -2*! to the value. fori<w-1: b;=1adds +2' to the value.

| |
\| b,.|b,.7] . o, | \| | . s, |

e.g. unsigned 1010,:
-1 0 1%23 +0%22 + 1*%2' + 0%2° = 10, -1 0

1111 0000 2's °°“:P_:- 1Oi0§: o 1111 0000
1110 0001 12740727 +1%27 + 0%27 = -6 1110 0001

1101 0010 1101 0010
1100 0011 1100 0011

1010
1001
1000

1010
1001
1000

0111

0111
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Two’s Complement Negatives 4-bit Unsigned vs. Two’s Complement
m How should we represent -1 in binary? 1011
Rather than a sign bit, let MSB have same value, but negative weight.
23x1+22x0+2'x1+2%x1 S22x1+22x0+21x1+29x1

b, ,=1adds -2*! to the value. fori<w-1: b;=1adds +2' to the value.

|
I o o AR T

e.g. unsigned 1010,:
1%23 +0%22 + 1*21+ 0*2° = 10,
2’s compl. 1010,:
-1¥23 4+ 0%22+ 1%21 + 0*20=-6,,
m -lisrepresentedas 1111, =-23+(23-1)
All negative integers still have MSB = 1.

m Advantages: single zero, simple arithmetic
m To get negative representation of
any integer, take bitwise complement
and then add one!
~X + 1 == -x

Autumn 2013 Integers & Floats
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4-bit Unsigned vs. Two’s Complement
1011

23x1+22x0+2'x1+2%x1 S22x1+22x0+21x1+29x1

1111 0000
1110 0001
1101 0010

1100 0011

1111
1110
1101
1100

0000
0001
0010
0011

1010 0101
1001 0110
1000 0111

1010
1001

Autumn 2013 8 7 Integers & Floats -8 +7 21

University of Washington

Two’s Complement Arithmetic

m The same addition procedure works for both unsigned and
two’s complement integers
= Simplifies hardware: only one algorithm for addition
= Algorithm: simple addition, discard the highest carry bit
= Called “modular” addition: result is sum modulo 2%

m Examples:

4 0100 4 0100 -4 1100
+3 + 0011 -3 + 1101 + 3 + 0011
=7 =0111 =1 1 0001 -1 1111

drop carry = 0001

Autumn 2013 Integers & Floats 23
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4-bit Unsigned vs. Two’s Complement

1011
23x1+22x0+21x1+2%°x1 23x1+22x0+2'x1+29x 1
11 . _ _~a -5
(math) difference = 16 = 2
-1 0
1111 0000
_3 1110 0001 \ +2
1101 0010
=4 [1100 o011 \* 3
_g\1011 0100 /, 4
1010
-6 1001 +5
Autumn 2013 8 7 Integers & Floats -8 +7 2
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Two’s Complement

m Why does it work?
= Put another way, for all positive integers x, we want:
= bits( x ) + bits(—x ) =0 (ignoring the carry-out bit)

= This turns out to be the bitwise complement plus one
= What should the 8-bit representation of -1 be?
00000001
+22222222 (we want whichever bit string gives the right result)
00000000

00000010 00000011

00000000 00000000

Autumn 2013 Integers & Floats 24
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Two’s Complement Two’s Complement
m Why does it work? m Why does it work?
= Put another way, for all positive integers x, we want: = Put another way, for all positive integers x, we want:
= bits( x ) + bits(—x ) =0 (ignoring the carry-out bit) = bits( x ) + bits(—x ) =0 (ignoring the carry-out bit)
= This turns out to be the bitwise complement plus one = This turns out to be the bitwise complement plus one
= What should the 8-bit representation of -1 be? = What should the 8-bit representation of -1 be?
00000001 00000001
+11111111 (we want whichever bit string gives the right result) +11111111 (we want whichever bit string gives the right result)
00000000 00000000
00000010 00000011 00000010 00000011
+22°22°2°2°2°? +22°22°2°2°2°? +11111110 +11111101
00000000 00000000 00000000 00000000
Unsigned & Signed Numeric Values Conversion Visualized
bits Unsigned| Signed 1) .
0000 0 m Signed and unsigned integers have limits. m Two’s Complement — Unsigned -

O |N(o|jn|bd|w|N |- O

iy
o

=

[N
|

[6,]

=

N
|

1N

[any
w

=
I

[y
v

; ; ® QOrdering Inversion UMax
0001 1 = |f you compute a number that is too big _ g . - UMax — 1
0010 2 (positive), it wraps: " Negative — Big Positive
0011 3 6+4=7? 15U+2U="?
o T I Ty i :
8 ’ ps: TMax ®  TMax Range

0110 6 7-3=?20U-2U0=? &
0111 7 = Answers are only correct mod 2°
1000 -8
100 = The CPU may b ble of “throwi
1010 6 [ e ! rgay e capable o t rowing an 2’s Complement 0 0
1011 exception” for overflow on signed values. -

0 Range -1
1100 " |t won't for unsigned. 5
1101 -3 m But C and Java just cruise along silently
1110 -2 when overflow occurs... Oops.
1111 -1 TMin
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Overflow/Wrapping: Unsigned

addition: drop the carry bit

15 1111 15 Z 0~
1111 0000
+_2 M 13 / 1110 0001 2
;]/ 10001 1101 0010
12 (1100 o011 | 3
1 11\ 1011 0100 | 4

1010 0101
1001 0110
1000 0111

Modular Arithmetic

Autumn 2013 Integers & Floats 29
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Values To Remember

m Unsigned Values m Two’s Complement Values

= UMin = 0 = TMin = —2w1
= 000...0 = 100...0

= UMax = 2v—1 = TMax = 2w1l-1
= 111..1 = 011..1

= Negative one

= 111..1 OxF...F
Values for W = 32

-m“

UMax 4,294,967,296 FF FF FF 11111111 11111111 11111111 11111111
TMax 2,147,483,647 7F FF FF FF 01111111 11111111 11111111 11111111
TMin -2,147,483,648 80 00 00 00 10000000 00000000 00000000 00000000
1 1 FF FF FF FF 11111111 11111111 11111111 11111111
0 0 00 00 00 00 00000000 00000000 00000000 00000000
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Overflow/Wrapping: Two’s Complement

addition: drop the carry bit

-1 1111 -1 0
1 10001 1101 0010
=4 [1100 oo11 \* 3
-5 1011 0100 + 4
6 0110 -6\ 1o s
1000 0111
+3 +0011 N L
9 1001 —
K Modular Arithmetic
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Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers
= Use “U” suffix to force unsigned:
= 0U, 42949672590
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Signed vs. Unsigned in C ! ! !
m Casting
» int tx, ty;
= unsigned ux, uy;
= Explicit casting between signed & unsigned:
* tx = (int) ux;
= uy = (unsigned) ty;
= Implicit casting also occurs via assighments and function calls:
= tx = ux;
uy = ty;
= The gcc flag -Wsign-conversion produces warnings for implicit casts,
but -Wall does not!

= How does casting between signed and unsigned work?
® What values are going to be produced?

Autumn 2013 Integers & Floats 33

Casting Surprises 111

m Expression Evaluation eee

®= |f you mix unsigned and signed in a single expression, then
signed values are implicitly cast to unsigned.

® Including comparison operations <, >, ==, <=, >=

= Examples for W=32: TMIN =-2,147,483,648 TMAX = 2,147,483,647

m Constant, Constant, Relation Evaluation
0 ou == unsigned
-1 0 < signed
-1 ou > unsigned
2147483647 -2147483648 > signed
2147483647U -2147483648 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

Autumn 2013 Integers & Floats 35
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Signed vs. Unsigned in C ! ! !
m Casting
» int tx, ty;
= unsigned ux, uy;
= Explicit casting between signed & unsigned:
= tx
» uy
= |mplicit casting also occurs via assighments and function calls:

(int) ux;

(unsigned) ty;

= tx = ux;

uy = ty;

= The gcc flag -Wsign-conversion produces warnings for implicit casts,
but -Wall does not!

" How does casting between signed and unsigned work?
" What values are going to be produced?

= Bits are unchanged, just interpreted differently!
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Sign Extension

m What happens if you convert a 32-bit signed integer to a 64-
bit signed integer?
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Sign Extension

m Task:
= Given w-bit signed integer x
= Convert it to w+k-bit integer with same value

m Rule:
= Make k copies of sign bit:
B X = Xygser X1 s Xyt s Xy rees Xg
_
k copies of MSB w
x LI 111
'
X' II==IIIITd 111
k w
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Sign Extension
0010 4-bit 2

00000010 &2

1100 4-bit -4

22?2?21100 b
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8-bit representations

00001001 10000001

11111111 00100111

C: casting between unsigned and signed just reinterprets the same bits.

Autumn 2013 Integers & Floats 38

University of Washington

Sign Extension
0010 4-bit 2

00000010 &2

1100 4-bit -4

00001100  sbitz
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Sign Extension Sign Extension
0010 4-bit 2 0010 4-bit 2

00000010  &bit2 00000010  &bit2

1100  4bica 1100  4bit-4

10001100  sbit-use 11111100  sbita

Autumn 2013 Integers & Floats a1 Autumn 2013 Integers & Floats a2

Sign Extension Example Shift Operations
m Converting from smaller to larger integer data type m Lleftshift:  x<<y Argument x | 01100010
m C automatically performs sign extension (Java too) Shift bit vector x eft by y positions «<3 00010000
= Throw away extra bits on left
= Fill with Os on right Logical >> 2 00011000
short int x = 12345; = Rightshift: x>>y Arithmetic >>2 | 00011000
int ix = (int) x; = Shift bit-vector x right by y positions
fhort int. y = —}2345; = Throw away extra bits on right
int iy = (int) y; = Logical shift (for unsigned values) Argument x 10100010
= Fill with Os on left <<3 00010000
Decimal Hex Binary = Arithmetic shift (for signed values) .
Logical >> 2 00101000
x 12345 30 39 00110000 01101101 = Replicate most significant bit on left g
ix 12345] 00 00 30 39 00000000 00000000 00110000 01101101 « Maintains sign of x Arithmetic >>2 | 11101000
y -12345 CF C7 11001111 11000111
iy -12345| FF FF CF C7 11111111 11111111 11001111 11000111

The behavior of >> in C depends on the compiler! It is arithmetic shift right in GCC.
Java: >>> is logical shift right; >> is arithmetic shift right.
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Shift Operations

m Left shift: X<<y
= Shift bit vector x left by y positions «3
= Throw away extra bits on left
= Fill with Os on right
m Rightshift: x>>y
= Shift bit-vector x right by y positions
= Throw away extra bits on right
= | ogical shift (for unsigned values)
= Fill with Os on left
= Arithmetic shift (for signed values) .
. o . Logical >> 2
= Replicate most significant bit on left
= Maintains sign of x
= Why is this useful?

Argument x 01100010

Logical >> 2

Arithmetic >> 2

Argument x 10100010

<<3

Arithmetic >> 2

X >>9?

The behavior of >> in C depends on the compiler! It is arithmetic shift right in GCC.
Java: >>>is logical shift right; >> is arithmetic shift right.

Autumn 2013 Integers & Floats a5
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What happens when...

m Xx>>n: divide by 2"

m X << m: multiply by 2™

faster than general multiple or divide operations
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What happens when...

m X>>n?

E X<<m?

Autumn 2013 Integers & Floats a6
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Shifting and Arithmetic

x=27; 00011011 x*2"

y=x<<2; // / / / logical shift left:

y == 108 O 1 1 O 1 1 0 O shift in zeros from the right

rounding (down)

X/2" 11101101 |/ won
logical shift right: \\\\\\\\ y=x>>2;
shift in zeros from the left 00111011 y==59

Autumn 2013 Integers & Floats a8
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Shifting and Arithmetic Using Shifts and Masks
si_grjle;il. 10011011 ¥ N m Extract the 2nd most significant byte of an integer?

=x<<2; : ;i .
veX M W logical shift left: | X | 01100001/01100010[01100011 01100100

y == 108 O 1 1 0 1 1 0 o shift in zeros from the right

rounding (down)

x=-19;
%/ 2" 11101101
arithmetic shift right: l\\,‘\‘\\‘\‘\‘\‘\‘ y=x>>2;
shift in copies of most significant bit .
from the left 11111011 5
At 2013 clarification from Mon.: shifts by, n,< 0.0or n >= word size are undefined

a9 Autumn 2013 Integers & Floats
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Using Shifts and Masks Using Shifts and Masks

m Extract the 2nd most significant byte of an integer:

m Extract the 2nd most significant byte of an integer:
= First shift, then mask: ( x >> 16 ) & OxFF

= First shift, then mask: ( x >> 16 ) & OxFF

X 01100001/01100010|01100011 01100100 X 01100001/01100010|01100011 01100100
x>>16 00000000 00000000 01100001]01100010; x>>16 00000000 00000000 01100001]01100010;

(x >> 16) & OXFF 00000000 00000000 00000000 11111111 (x >> 16) & OXFF 00000000 00000000 00000000 11111111
00000000 00000000 00000000 01100010 00000000 00000000 00000000 01100010

m Extract the sign bit of a signed integer? m Extract the sign bit of a signed integer:

" (x>>31)&1 -needthe “& 1” to clear out all other bits except LSB

m Conditionals as Boolean expressions (assuming x is 0 or 1)
= if (x) a=y else a=z; whichisthesameas a=x?y:z
= Can be re-written (assuming arithmetic right shift) as:
a=(((x<<31)>>31)&y)| ((('x)<<31)>>31)&z);
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Multiplication

m What do you get when you multiply 9 x 9?

m What about 230 x 3?

m 230x5?

m -231x-231?
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Power-of-2 Multiply with Shift

m Operation
" u << k gives u * 2k

® Both signed and unsigned k
L 111
Operands: w bits . o — —
True Product: w+k bits w2 (I e TTTT0l - Jol0l
Discard k bits: w bits UMult, (.25 [“eee T T T O] ee= JO[O]
TMult,(u , 2%)
m Examples
" u<< 3 == u * 8
" u<< 5 -u<<3 == u * 24

® Most machines shift and add faster than multiply
= Compiler generates this code automatically
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Unsigned Multiplication in C

Operands: w bits u [T TTT1]

v o IIr .- TTT11

wv 111 [TTTTT1 [TT11
Discard w bits: w bits UMult,(u,v) [T TT11

True Product: 2*w bits

m Standard Multiplication Function
= |gnores high order w bits

m Implements Modular Arithmetic

UMult,(u, v)=u-v mod 2%
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Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from kernel (void* user_dest, int maxlen) ({
/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy (user_dest, kbuf, len);
return len;

#define MSIZE 528

void getstuff() {
char mybuf [MSIZE];
copy_from kernel (mybuf, MSIZE) ;
printf (“%s\n”, mybuf);
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Mallc‘ous Usage /* Declaration of library function memcpy */

void* memcpy (void* dest, void* src, size t n);

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from kernel (void* user_dest, int maxlen) ({

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy (user_dest, kbuf, len);

return len;

#define MSIZE 528

void getstuff () {
char mybuf [MSIZE] ;
copy_from kernel (mybuf, -MSIZE);
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Fractional Binary Numbers

2!

m Representation
= Bits to right of “binary point” represent fractional powers of 2

Elbk-zk

k==j

= Represents rational number:

Autumn 2013 Integers & Floats 59
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Floating point topics

m Background: fractional binary numbers
m |EEE floating-point standard

m Floating-point operations and rounding
|

Floating-point in C

There are many more details that we won’t cover
" |t's a 58-page standard...
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Fractional Binary Numbers

m Value Representation
= 5and3/4 101.11,
= 2and7/8 10.111,
" 47/64 0.101111,

m Observations
= Shift left = multiply by power of 2
= Shift right = divide by power of 2
® Numbers of the form 0.111111..., are just below 1.0
m Limitations:
= Exact representation possible only for numbers of the form x * 2
= Qther rational numbers have repeating bit representations
= 1/3=0.333333...,,=0.01010101[01]...,
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Fixed Point Representation

m Implied binary point. Examples:
#1: the binary point is between bits 2 and 3
b, bgbsb, by [.1b, b, b,
#2: the binary point is between bits 4 and 5
b, bg bs [.1b, by b, b, by

m Same hardware as for integer arithmetic.

#3: integers! the binary point is after bit 0
b, bg bsb, by b, b, by [.]

m Fixed point = fixed range and fixed precision

® range: difference between largest and smallest numbers possible
= precision: smallest possible difference between any two numbers
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Floating Point Representation

m Numerical form:
Vyo= (1) * M * 2F

= Sign bit s determines whether number is negative or positive
= Significand (mantissa) M normally a fractional value in range [1.0,2.0)
= Exponent E weights value by a (possibly negative) power of two

Autumn 2013 Integers & Floats 63
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IEEE Floating Point

m Analogous to scientific notation
= 12000000 1.2 x 107 C:1.2e7
= 0.0000012 1.2x10° C:1.2e-6

m |EEE Standard 754 used by all major CPUs today

m Driven by numerical concerns
= Rounding, overflow, underflow
= Numerically well-behaved, but hard to make fast in hardware
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Floating Point Representation

m Numerical form:
Vyo= (1) * M * 2F

= Sign bit s determines whether number is negative or positive
= Significand (mantissa) M normally a fractional value in range [1.0,2.0)
= Exponent E weights value by a (possibly negative) power of two

m Representation in memory:
" MSB s is sign bit s
= exp field encodes E (but is not equal to E)
= frac field encodes M (but is not equal to M)

|s |exp |frac
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Precisions

m Single precision: 32 bits

| s | exp | frac
1 bit 8 bits 23 bits

m Double precision: 64 bits

| s | exp | frac
1 bit 11 bits 52 bits

m Finite representation means not all values can be represented
exactly. Some will be approximated.
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Normalization and Special Values
E

V=1 *m*2 [s [exp [ £rac

m “Normalized” = M has the form 1.xxxxx
® As in scientific notation, but in binary

= 0.011 x 2> and 1.1 x 23 represent the same number, but the latter makes
better use of the available bits

= Since we know the mantissa starts with a 1, we don't bother to store it.
m Special values:
= zero: s==0 exp==00..0 frac==00...0

" 400, -00: exp==11..1 frac==00..0
1.0/0.0 =-1.0/-0.0 = +, 1.0/-0.0 =-1.0/0.0 = —©

= NaN (“Not a Number”): exp==11..1 f£frac!=00...0
Results from operations with undefined result: sqrt(-1), o« — o, o * 0, etc.

note: exp=11...1 and exp=00...0 are (reserved, limiting exp range...

Autumn 2013
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Normalization and Special Values
E

V=1 *m*2 [s [exp [ £rac

m “Normalized” = M has the form 1.xxxxx
® As in scientific notation, but in binary

= 0.011 x 2> and 1.1 x 23 represent the same number, but the latter makes
better use of the available bits

" Since we know the mantissa starts with a 1, we don't bother to store it

m How do we represent 0.0? Or special / undefined values like
1.0/0.0?
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Floating Point Operations: Basic Idea
E

V=) mr2 [s |exp [ £rac

B X +, Yy = Round(x + y)
m X * y = Round(x * y)

m Basic idea for floating point operations:
" First, compute the exact result
® Then, round the result to make it fit into desired precision:
= Possibly overflow if exponent too large
= Possibly drop least-significant bits of significand to fit into £rac
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Floating Point Multiplication

(_1)51 M1 2E1 * (_1)52 M2 252
m Exact Result: (-1)° M 2f

= Signs: s1nrs2

= Significand M: M1 * M2

= Exponent E: E1+E2
m Fixing

= |f M 2 2, shift M right, increment E
= |f E out of range, overflow
= Round M to fit £rac precision
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Rounding modes

m Possible rounding modes (illustrate with dollar rounding):
$1.40 $1.60 $1.50 $2.50 -$1.50

Round-toward-zero S1 S1 S1 S2 -S1
Round-down (-) S1 S1 S1 S2 -S2
Round-up (+=) S2 S2 S2 S3 -S1
Round-to-nearest s1 S2 ?? ?? ??
= Round-to-even S1 S2 S2 S2 -S2

m Round-to-even avoids statistical bias in repeated rounding.
= Rounds up about half the time, down about half the time.
= Default rounding mode for IEEE floating-point
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Floating Point Addition

(<1)st M1 281 + (-1)2 M2 282
Assume E1 > E2

[ E1-£2 —
m Exact Result: (-1)s M 2f L apimr |
= Sign s, significand M: N [ (=1)2 M2 |
= Result of signed align & add
= Exponent E: El [ (=1 M |

m Fixing
= |f M 2 2, shift M right, increment E
= if M < 1, shift M left k positions, decrement E by k
= Qverflow if E out of range
= Round M to fit £rac precision
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Mathematical Properties of FP Operations

m Exponent overflow yields + or -

m Floats with value +, -0, and NaN can be used in operations
= Result usually still +o0, -0, or NaN; sometimes intuitive, sometimes not

m Floating point operations are not always associative or
distributive, due to rounding!
" (3.14 + 1e10) - 1e10 !=3.14 + (1e10 - 1e10)
" 1e20 * (1e20 - 1€20) != (120 * 1e20) - (1e20 * 1e20)
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Floating Point in C 11 Floating Point in C 11

oo o oo o
m C offers two levels of precision m Conversions between data types:
float single precision (32-bit) ® Casting between int, f1loat, and double changes the bit
double double precision (64-bit) representation.

" int - float

= May be rounded; overflow not possible
m #include <math.h>toget INFINITY and NAN constants (¢ Mayberod vertiownot possl
" int - doubleorfloat - double

m Equality (==) comparisons between floating point numbers are - Exact conversion (32-bit ints; 52-bit frac + 1-bit sign)
tricky, and often return unexpected results * long int = double

® Just avoid them! = Rounded or exact, depending on word size

®" doubleor float - int
= Truncates fractional part (rounded toward zero)
= Not defined when out of range or NaN: generally sets to Tmin
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Number Representation Really Matters ! ! ! Floating Point and the Programmer

#include <stdio.h>

m 1991: Patriot missile targeting error
= clock skew due to conversion from integer to floating point

int main(int argc, char* argv[]) {

float f1 = 1.0;

m 1996: Ariane 5 rocket exploded ($1 billion) TR

= overflow converting 64-bit floating point to 16-bit integer foﬁz(;:g’foﬁé%;i” )t
m 2000: Y2K problem )

= |imited (decimal) representation: overflow, wrap-around giﬁg2::2%38;0?;?3?,\“;’1)j(i“t*)&fl' UREREE2); |8 R oae0  0x3£800001
m 2038: Unix epoch rollover printf ("2 = %10.8f\n\n", £2); o ou000ias

= Unix epoch = seconds since 12am, January 1, 1970 g - ifgo £f1 == £32 yes

= signed 32-bit integer representation rolls over to TMin in 2038 ;izitff?'élfi:Jrfgi;%s\n", e £3 7 wyesn & vmon )
m other related bugs return 0;

= 1994: Intel Pentium FDIV (floating point division) HW bug (5475 million) }
® 1997: USS Yorktown “smart” warship stranded: divide by zero
= 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
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Memory Referencing Bug

double fun(int i)
{
volatile double d[1l] = {3.14};
volatile long int al[2];
al[i] = 1073741824; /* Possibly out of bounds */
return d[0];

fun(0) -> 3.14
fun (1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault
Explanation: Saved State |4
d7 .. d4 3
Location accessed b
d3 .. do 2 : 4
fun (i)
all] 1
al0] 0
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Memory Referencing Bug (Revisited)

double fun(int i)
{
volatile double d[1l] = {3.14};
volatile long int al[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

fun(0) -> 3.14

fun(l) -> 3.14

fun(2) -> 3.1399998664856

fun(3) -> 2.00000061035156

fun(4) -> 3.14, then segmentation fault

Saved State 4
d7 .. d4 01000000 0000 1001 0001 111010111000 3
d3 .. do 01010000 ... > Location
accessed
=t 1| by fun (i)
al0] 0
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Representing 3.14 as a Double FP Number

= 1073741824 = 0100 0000 0000 0000 0000 0000 0000 0000
= 3.14=11.0010 0011 1101 0111 0000 1010 000...
m (1M 2F

® S=0 encodedas 0

"= M=1.10010001 11101011 1000 0101 000.... (leading 1 left out)
® E=1 encoded as 1024 (with bias)

[s]exp 1) [ frac (first 20 pits) |
0 10000000000 1001 0001 1110 1011 1000

|frac (the other 32 bits) |
0101 0000 ...
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Memory Referencing Bug (Revisited)

double fun(int i)
{
volatile double d[1l] = {3.14};
volatile long int al[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

fun(0) -> 3.14

fun(l) -> 3.14

fun(2) -> 3.1399998664856

fun(3) -> 2.00000061035156

fun(4) -> 3.14, then segmentation fault

Saved State 4
d7 .. d4 01000000 0000 1001 0001 111010111000 3
d3 .. d0 0100 0000 0000 0000 0000 0000 0000 0000 2 Location
accessed
=t 1| by fun (i)
0
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Memory Referencing Bug (Revisited) Summary
double fun(int i) R R . .
{ m As with integers, floats suffer from the fixed number of bits
volatile double d[1] = {3.14}; .
volatile long int a(2]; available to represent them
ali] = 1073741824; /* Possibly out of bounds */ = Can get overflow/underflow, just like ints
return d[0];
} = Some “simple fractions” have no exact representation (e.g., 0.2)
® Can also lose precision, unlike ints
fun(0) -> 3.14 “ . . ”
fun (1) -> 3.14 = “Every operation gets a slightly wrong result
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156 . . . .
fun(4) -> 3.14, then segmentation fault m Mathematically equivalent ways of writing an expression may

compute different results

Saved State 4 = Violates associativity/distributivity
d7 .. d4 0100 0000 0000 0000 0000 0000 0000 0000 3
43 . 40 01010000... 5\ Location m Never test floating point values for equality!
accessed ful wh . b . df |
all] 1| by fun (1) m Careful when converting between ints and floats!
alo] 0
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Many more details for the curious...

Exponent bias

Denormalized values - to get finer precision near zero
Distribution of representable values

Floating point multiplication & addition algorithms

Rounding strategies

m We won’t be using or testing you on any of these extras in
351.
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Normalized Values
E

V=(—1)s*|\/|*2 |s |exp |frac
k n
m Condition: exp = 000...0 and exp = 111...1
m Exponent coded as biased value: E = exp - Bias
= exp is an unsigned value ranging from 1 to 2k (k == # bits in exp)
® Bigs = 2K1 -1
= Single precision: 127 (so exp: 1..254, E:-126...127)
= Double precision: 1023 (so exp: 1...2046, E: -1022...1023)

" These enable negative values for E, for representing very small values

m Significand coded with implied leading 1: M = 1.xxx..x,
= xxx..x:the n bits of frac
= Minimum when 000...0 (M =1.0)
= Maximum when 111..1 (M=2.0—¢)
= Get extra leading bit for “free”
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Denormalized Values

m Condition: exp = 000...0

Exponent value: E = exp — Bias + 1 (instead of E = exp — Bias)

Significand coded with implied leading 0: M = 0 . xxx...x,

= xxx..x: bits of frac

m Cases
" exp=000..0,frac=000..0
= Represents value 0
= Note distinct values: +0 and -0 (why?)
" exp=000..0, frac=000..0
= Numbers very close to 0.0
= Lose precision as get smaller
= Equispaced
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Normalized Encoding Example
E

V=1 *m*2 [s [exp [ £rac

k n

m Value: float £ = 12345.0;
= 12345,, =11000000111001,
=1.1000000111001, x 2*3 (normalized form)

m Significand:

M = 1.1000000111001,

frac= 10000001110010000000000,
m Exponent: E = exp - Bias, so exp = E + Bias

E = 13

Bias = 127

exp = 140 = 10001100,
m Result:

[0][10001100][10000001110010000000000]
s exp frac
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Special Values

m Condition: exp=111...1

m Case:exp=111..1, frac=000...0
= Represents value  (infinity)
® Qperation that overflows
= Both positive and negative

= E.g. 1.0/0.0=-1.0/-0.0 = +%0, 1.0/-0.0 =-1.0/0.0 =-o©

m Case: exp=111..1, frac=000...0
= Not-a-Number (NaN)
= Represents case when no numeric value can be determined
= E.g.,sqrt(-1), oo — o0, 00 % ()
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Visualization: Floating Point Encodings

. . +00
-Normalized | -Denorm : | :+Denorm; +Normalized |

! -=/l\= ! 1
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Dynamic Range (Positive Only)

s exp frac E Value

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512 closest to zero
Denormalized 0 0000 010 -6 2/8*1/64 = 2/512
numbers
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512 largest denorm
0 0001 000-6 8/8*1/64 = 8/512 smallest norm
0 0001 o001 -6 9/8*1/64 = 9/512
0 0110 110 -1 14/8*1/2 = 14/16
. 0 0110 111 -1 15/8*1/2 = 15/16 closest to 1 below
Normalized 117 g0 o s8/8*1 =1
U 0 0111 001 0 9/8*1 = 9/8 closest to 1 above
0 0111 010 0 10/8*1 = 10/8
0 1110 1107 14/8*128 = 224

o

1110 111 7 15/8*128 = 240 largest norm
0 1111 000 n/ainf
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Tiny Floating Point Example

|s|exp |frac |
1 4 3

m 8-bit Floating Point Representation
= the sign bit is in the most significant bit.
= the next four bits are the exponent, with a bias of 7.
= the last three bits are the frac

m Same general form as IEEE Format
" normalized, denormalized
= representation of 0, NaN, infinity
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Distribution of Values

m 6-bit IEEE-like format
= e =3 exponent bits | s | exp | frac |
= =2 fraction bits 1 3 2
" Bjasis231-1=3

m Notice how the distribution gets denser toward zero.

A A A A A A AAAAMMMIINAA A AL —A—A—h—A—A—A—A—
-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized  Infinity
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Distribution of Values (close-up view)

m 6-bit IEEE-like format

= e =3 exponent bits | S | €552 | frac |
. . 1 3 2

= f =2 fraction bits

" Biasis3

A 4 A A A AL 0000000iiiiit A A A A
-1 -0.5 0 0.5 1
]0 Denormalized A Normalized @ Infinity\
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Special Properties of Encoding

m Floating point zero (0*) exactly the same bits as integer zero
= Allbits=0

m Can (Almost) Use Unsigned Integer Comparison
® Must first compare sign bits
= Must consider 0-=0*=0
®= NaNs problematic
= Will be greater than any other values
= What should comparison yield?
®  Otherwise OK
= Denorm vs. normalized
= Normalized vs. infinity
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{single, double}

Interesting Numbers

Description exp frac Numeric Value

m Zero 00..00 00...00 0.0

m Smallest Pos. Denorm. 00..00 00..01 2~ 23,52} * - {126,1022}
= Single=1.4 * 10
= Double =~ 4.9 * 103

m Largest Denormalized 00..00 11..11
= Single~1.18 * 10738
= Double=2.2 * 107308

m Smallest Pos. Norm. 00..01 00..00
= Just larger than largest denormalized

m One 01..11 00...00 1.0

m Llargest Normalized 11..10 11..11 (2.0 — g) * 2{127,1023}
= Single=3.4* 1038
= Double ~ 1.8 * 10308

(10 - E) * - {126,1022}

1.0 * 2- {126,1022}
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Floating Point Multiplication
(_1)51 M1 2E1 * (_1)52 M2 ZEZ

m Exact Result: (-1)s M 2°

= Signs: s1/7s2 // xor of s1 and s2
= Significand M: M1 * M2
= Exponent E: E1+E2

m Fixing

= |f M 2 2, shift M right, increment E
= |f E out of range, overflow
® Round M to fit frac precision
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Floating Point Addition

(—1)51 M1 21 + (—1)52 M2 2F2 Assume E1 > E2

[ E1-£2 —

m Exact Result: (-1)s M 2°
[ ptmr |

= Sign s, significand M:
= Result of signed align & add + | (=1)2 M2 |
" Exponent E: E1

[ (=)™ |

m Fixing
= |f M > 2, shift M right, increment E
= if M < 1, shift M left k positions, decrement E by k
= Qverflow if E out of range
® Round M to fit frac precision
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Rounding Binary Numbers

m Binary Fractional Numbers
= “Half way” when bits to right of rounding position = 100...,

m Examples
= Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded  Action Rounded Value
23/32 10.00011, 10.00, (<1/2—down) 2
23/16 10.00110, 10.01, (>1/2—up) 21/4
27/8 10.11100, 11.00, ( 1/2—up) 3

25/8 10.10100, 10.10, ( 1/2—down) 21/2
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Closer Look at Round-To-Even

m Default Rounding Mode
® Hard to get any other kind without dropping into assembly
= All others are statistically biased

= Sum of set of positive numbers will consistently be over- or under-
estimated

m Applying to Other Decimal Places / Bit Positions

= When exactly halfway between two possible values
= Round so that least significant digit is even

® E.g., round to nearest hundredth
1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)
1.2450000 1.24 (Half way—round down)
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