University of Washington

University of Washington

Announcements Hardware: Logical View

m On the website: cs.uw.edu/351
= Speedometer! ﬁ* \
= Anonymous feedback form e oo
® Make sure you are subscribed to the mailing list
= Lecture slides on the web schedule (these will be linked 1-2 days prior)

Memory

® Lab 0, having fun? Make sure to start early

= Discussion boards
= Videos for optional reference — not exactly the same slides as we’ll use |
= Tips for C, debugging, etc. ’ Bus ‘

= Lecture content | |

= Office hours posted: if they don’t work for you, let us know - USB Etc
(Net() :

m Anyone not yet enrolled? If not, see me right after class
m New section being created for Th 11:30 - stay tuned

Autumn 2013 Memory & data 1 Autumn 2013 Memory & data 2

University of Washington

University of Washington

Hardware: Semi-Logical View

. .
.
(Hardware: Physical View
Intel” Core™2 Duo Processor
Intel* Core™2 Quad Processor
| 10.6 GB/s
PCl Express* 2.0 16 lanes 0‘9
4 GLpnCs 16 GB/s DDR2 or DDR3 < a'oo USB...
(%)
= or 6.4 GBIs or 8.5 GB/s) () PCl-Express Slots
< 3 (\ 1 PCI-E X16, 2 PCI-E X1 Back Panel Connectors
Q PCl Express* 2.0 8 lanes o
© Graphics 8CB/s DDR2 or DDR3 o 00
= 6.4 GB/s or 8.5 GB/s 2 o
(V) PCl Express* 2.0 8 lanes e}
Graphics 8GB/s
2 GB/s| DMI
. 12 Hi-Speed USB 2.0 Ports; RSN sl g Socket 775
H Dual EHCI; USB Port Disable JEEI o Core2 Quad/
=2} I/ 0 Intel’ Quiet System - Core2 Extreme
wv i 0 Technology o Ready
oD 6 PCI Express” x1 MBls
. EBM 6 Serial ATA Ports; eSATA;
ach x1 3 g
e (Bus) cbrs Port Disable A gm:;s CPU
Intel® Integrated o
g LPC |or SPI Storage Technology dlnl | / O lme::‘:i::;eot ; -
. Intel* Turbo Memor, [} { 1066 +4Hz
'.d-.; Intel® Gigabit LAN Connect BIOS Support wit;l Us".e?:inr::lngo y ContrO| Ie r ° Dual Channel
k Memory Slots
2 = Serial ATA
Intel® Extreme Tuning —
=i i Memory
y, Storage connections
Autumn 2013 Intel® P45 Express Chipset Block Diagram iemory & data 3 Autumn 2013 Memory & data

Parallel Port RJ-45 Gigabit LAN Port
| |

University of Washington University of Washington

Hardware: 351 View Hardware: 351 View

2 \instructions instructions

this week...

Memory Memory

\

data >

\

data >

\CPU / \CPU register5/

= CPU executes instructions; memory stores data m The CPU holds instructions temporarily in the instruction cache
= To execute an instruction, the CPU must: m The CPU holds data temporarily in a fixed number of registers
= fetch an instruction; m Instruction and operand fetching is HW-controlled
= fetch the data used by the instruction; and, finally, m Data movement is programmer-controlled
" execute the instruction on the data... m We'll learn about the instructions the CPU executes —
= which may result in writing data E?ck to memory. take 352 to find out how it exec&t;ltes them
Memory & data
Hardware: 351 View Roadmap Integers & floats
C: Java: Machine code & C
’ - x86 assembly
H H car *c = malloc(sizeof (car)) ; Car ¢ = new Car(); [d & stacl
\ InStrUCtlo—ns-— c->miles = 100; c.setMiles (100) ; A:cr);:es ;Lr(se:rucisac ©
c->gals = 17; c.setGals (17) ; M 4 2 h
this week... float mpg = get mpg(c) ; float mpg = emory & caches
take 352 free (c) ; c.getMPG() ; Processes
Memory ~— o Virtual memory
Assembly get_mpg: Memory allocation
. pushqg %rbp Javavs. C
How are data language: Con G S
and instructions Pon e
d? .
represente : H d cache. Machine 0111010000011000
. OW does a . 100011010000010000000010
m The CPU holds data temporaril fi . ters. code: 1000100111000010
110000011111101000011111
m Instruction fetching is HW-cont program nd its i

v

m Data movement is programme data in memory?

Computer y
system:

Autumn 2013 Memory & data 7 Autumn 2013

University of Washington University of Washington

Memory, Data, and Addressing

m Representing information as bits and bytes \ instructions
m Organizing and addressing data in memory o
. . . . this week...
m Manipulating data in memory using C
m Boolean algebra and bit-level manipulations

)
How are data data | >
and instructions

represented?
Binary Representations Describing Byte Values
m Base 2 number representation m Binary 00000000, -- 11111111,
= A base 2 digit (0 0 1) is called a bit. = Byte = 8 bits (binary digits) I
. &7
" Represent 351,,as 0000000101011111, or 101011111, m Decimal 0,, - 255,, \?\Q’+ QQ’OQS\(\%
m Hexadecimal 00,, - FF 0] 010000
m Electronic implementation = Byte = 2 hexadecimal (or “hex” or base 16) digits % % 88%
" Easy to store with bi-stable elements = Base 16 number representation 2 2 8(1)(1)(1)
= Reliably transmitted on noisy and inaccurate wires ® Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’ 5 | 5 [0101
. . 6160110
0 = Write FA1D37B,5in C > T7 [0111
= as OxFA1D37B or 0xfald37b 8 1 8 [1000
3.3V . 9 [91001
m More on specific data types later... A 101 1010
2.8V B 1111011
C 11211100
0.5V D [13]1101
E [14] 1110
0.0V F [15] 1111

Autumn 2013 Memory & data 11 Autumn 2013 Memory & data

University of Washington

instructions

this week...

Memory

\

data >

How does a
program find its
data in memory?

Autumn 2013 Memory & data 13

University of Washington

Machine Words

fixed number of contiguous bytes in memory, chosen by HW
the largest unit of data a machine instruction can use
word size = address size = register size

Word size bounds the size of the address space and memory.

= word size = w bits => 2% addresses
= Until recently, most machines used 32-bit (4-byte) words.

= Potential address space: 232 addresses

232 bytes =~ 4 x 10° bytes = 4 billion bytes = 4GB
(living humans / addressable bytes ~ 1.8)

= Became too small for memory-intensive applications

= Current x86 systems use 64-bit (8-byte) words.

= Potential address space: 24 addresses
2% bytes ~ 1.8 x 10*? bytes = 18 billion billion bytes = 18 EB (exabytes)

(possible living acquaintances / addressable bytes = 2.8)

Autumn 2013 Memory & data 15

University of Washington

Byte-Oriented Memory Organization

Conceptually, memory is a single, large array of bytes,
each with an unique address (index).

The value of each byte in memory can be read and written.
Programs refer to bytes in memory by their addresses.

= Domain of possible addresses = address space

m But not all values (e.g., 351) fit in a single byte...
= Store addresses to “remember” where other data is in memory.
" How much memory can we address with 1-byte (8-bit) addresses?

m Many operations actually use multi-byte values.

Autumn 2013 Memory & data 14

University of Washington

Word-Oriented Memory Organization
64-bit 32-bit

m Addresses specify Words Words DYtes Addr
locations of bytes in memory 0000
= Address of word Adzdr 0001
= address of first byte in word Addr ? 0002
= Addresses of successive words = 0003
differ by word size (in bytes): 7 Addr 0004
e.g., 4 (32-bit) or 8 (64-bit) - 8382
= Address of word 0, 1, .. 10? ?? 0007
0008
Adzdr 0009
Addr 2 0010
= 0011
” 0012
Ad:dr 0013
» 0014
Autumn 2013 Memory & data 0015 16

University of Washington

Word-Oriented Memory Organization

. . 64-bit
m Addresses still specify Words

32-bit
Words

Bytes

locations of bytes in memory

= Address of word
= address of first byte in word Addr

= Addresses of successive words =
differ by word size (in bytes): 0000
e.g., 4 (32-bit) or 8 (64-bit)

= Address of word 0, 1, .. 10?

Addr

0000

Addr

0004

= Alignment

Addr

0008

Addr

0008

Addr

0012

Autumn 2013 Memory & data

University of Washington

Addresses and Pointers

m An address is a location in memory

m A pointer is a data object that holds an address.
m The value 351 is stored at address 0x04.

= 351, = 15F,; = 0x00 00 01 5F

Autumn 2013 Memory & data

00 00 01 5F

Addr.

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

Memory Alignment

University of Washington

m Data of size n only stored at addresses a where a mod n=0

= Convention or rule, depending on platform.
" nis usually a power of 2.

m A 32-bit (4-byte) word-aligned

0x00 0x01 0x02 0x03
’

¥ TV T ¢ T ¥

view of memory: 8"82
® Each row is a word composed of 4 bytes S s e 0108
= Cellsin a row are the word’s bytes 0x0C
/ 0x10
A 0x14
0x04 0x05 0x06 0x07 0x18
0x1C
0x20
0x24
More about alignment later in the course.
University of Washington
Addresses and Pointers
m An address is a location in memory
m A pointer is a data object that holds an address.
m The value 351 is stored at address 0x04.
= 351,,=15F, = 0x00 00 01 5F 0X00
m A pointer stored at address 0x1C 00 00 01 SF| oxo4
points to address 0x04. 0x08
0x0C
0x10
0x14
0x18
00 .00 00 04| oxic
0x20
0x24

Autumn 2013 Memory & data

(note hex
addresses)

University of Washington University of Washington

Addresses and Pointers Addresses and Pointers
m An address is a location in memory m An address is a location in memory
m A pointer is a data object that holds an address. m A pointer is a data object that holds an address.
m The value 351 is stored at address 0x04. m The value 351 is stored at address 0x04.
" 351,,=15F,;; = 0x00 00 01 5F 0x00 " 351,,=15F,;; = 0x00 00 01 5F 0x00
m A pointer stored at address 0x1C 00 00 01 SF| Ox04 m A pointer stored at address 0x1C 00 00 01 SF| Ox04
points to address 0x04. 0x08 points to address 0x04. 0x08
m A pointer to a pointer 8§gg m A pointer to a pointer 8§gg
is stored at address 0x24. Ox14 is stored at address 0x24. 00 00 00 OCl Ox14
0x18 m The value 12 is stored 0x18
00 .00 00 04| oxic at address Ox14. 00 .00 00 04 oxicC
0x20 " |sita pointer? 0x20
0000 00 1C| Ox24 ' 0000 00 1C| Ox24
Data Representations Byte Ordering
Sizes of data types (in bytes) m How should bytes within a word be ordered in memory?
Java Data Type C Data Type Typical 32-bit x86-64 m Example: Store the 4-byte word Oxal b2 ¢3 d4.
boolean bool 1 1 = |n what order will the bytes be stored?
byte char ! ! m Conventions!
char) 2 2 = Big-endian, Little-endian
short short int 2 2 = Based on Gulliver’s Travels: tribes cut eggs on different sides (big, little)
int int 4 4
float float 4 4
long int 4 8
double double 3 8
long AU address size = word size [K
long double 16

(reference) pointer * 4 8

Autumn 2013 Memory & data 23 Autumn 2013 Memory & data 24

University of Washington

Byte Ordering

m Big-Endian (PowerPC, SPARC, The Internet)
= |east significant byte has highest address

m Little-Endian (x86)
= Least significant byte has lowest address

m Example
® Variable has 4-byte representation Oxalb2c3d4
= Address of variable is 0x100

0x100 0x101 0x102 0x103

BigEndian[| [ai[b2[c3Tda] T |
0x100 0x101 O0x102 0x103
LittteEndian | [dd[c3[b2la1] []

Autumn 2013 Memory & data 25

University of Washington

Reading Byte-Reversed Listings

m Disassembly
= Take binary machine code and generate an assembly code version.
= Does the reverse of the assembler.
m Example instruction in memory
® add value Ox12ab to register ‘ebx’ (a special location in CPU’s memory)

Address
8048366:

Instruction Code
81c¢3ab120000

Assembly Rendition
add $0x12ab,%ebx

Autumn 2013 Memory & data 27

higher addresses <—> lower addresses

>
3
g

University of Washington

Byte Ordering Example
int x = 12345; Decimal: 12345
Binary: 0011 0000 0011 1001
long int y = 12345;
Hex: 3 0 3 9
IA32,x86-64 X SPARC x
39 00
30 00 32-bit 64-bit
00 30 IA32y x86-64y SPARCy SPARCy
00 39 39 39 00 00
30 30 00 00
00 00 30 00
00 00 39 00
00 00
00 00
00 30
00 39

Memory & data 26

University of Washington

Reading Byte-Reversed Listings

m Disassembly
= Take binary machine code and generate an assembly code version.
= Does the reverse of the assembler.
m Example instruction in memory
® add value Ox12ab to register ‘ebx’ (a special location in CPU’s memory)

Address Instruction Code Assembly Rendition
8048366: 81 c3ab 1200 00 add $0x12ab,%ebx

Deciphering numbers /

= Value: 0x12ab

= Pad to 32 bits: 0x000012ab
m Split into bytes: 000012 ab
m Reverse (little-endian): ab 12 00 00

Autumn 2013 Memory & data 28

University of Washington University of Washington

. . & = ‘address of’ & = ‘address of’
Addresses and Pointers in C * = ‘value at address’ Assignment in C * = ‘value at address’
. or ‘dereference’ or ‘dereference’
int* ptr; . . .
Declares a variable, ptr, thatis a m Avariable is represented by a memory location.
pointer to (i.e., holds the address of) m Initially, it may hold any value.
int x = 5; an int in memory. m intx,y;
int y = 2;™\ Declares two variables, x and y, that hold ints, " //xis at location 0x04, y is at Ox18. A7 00 32 00] 0x00
and sets them to 5 and 2, respectively. 00 .01 29 F3| ox04 x
ptr = &x; EE EE EE EE| Ox08
Sets ptr to the address of x. FA CE CA FE| 0xOC
Now, “ptr points to x.” (2)8 88 28 88 gxig
//D t -// X
ereference ptr. 01 00 00 00] Ox18 vy
Whatis * (&Y) ? FF 00 F4 96| oOxiC
y = 1 + *ptr; 00 00 00 00| 0x20
00 .42 17 34| 0x24
Sets y to 1 plus the value at the address held by ptr.
Because ptr points to x, this is equivalent to y=1+x;

29 Autumn 2013 Memory & data 30

& = ‘address of’ & = ‘address of’
Assignment in C * = ‘value at address’ Assignment in C * = ‘value at address’
or ‘dereference’ or ‘dereference’
m A variable is represented by a memory location. m Left-hand-side = right-hand-side;
m Initially, it may hold any value. ® LHS must evaluate to a memory location.
mintx,y; ® RHS must evaluate to a value. (could be an address!)
! ' . . ® Store RHS value at LHS location.
// x is at location 0x04, y is at 0x18. 0x00 - intxy: 0x00
0001 29 F3| Ox04 «x 00 00 00 00| Ox04 «x
0x08 = x=0; 0x08
0x0C 0x0C
0x10 0x10
0x14 0x14
01 .00 00 00 Ox18 vy 01 .00 00 00 Ox18 vy
0x1C 0x1C
0x20 0x20
0x24 0x24

Autumn 2013 Memory & data 31 Autumn 2013 Memory & data 32

University of Washington University of Washington

& = ‘address of’ & = ‘address of’
Assignment in C * = ‘value at address’ Assignment in C * = ‘value at address’
or ‘dereference’ or ‘dereference’
m Left-hand-side = right-hand-side; m Left-hand-side = right-hand-side;
® | HS must evaluate to a memory location. ® | HS must evaluate to a memory location.
® RHS must evaluate to a value. (could be an address!) ® RHS must evaluate to a value. (could be an address!)
= Store RHS value at LHS location. = Store RHS value at LHS location.
m intx,y; 0x00 m intx,y; 0x00
00 00 00 00| Ox04 x 03 27 DO 3C| Ox04 x
= x=0; 0x08 = x=0; 0x08
m y=0x3CD02700; 0x0C m y=0x3CD02700; 0x0C
0x10 _ 3. 0x10
0x14 mXSYHS; 0x14
00 27 DO 3C| Ox18 vy = // Getvalue aty, add 3, put it in x. 00 27 DO 3C| Ox18 vy
0x1C 0x1C
0x20 0x20
0x24 0x24
little endian!
& = ‘address of’ & = ‘address of’
Assignment in C * = ‘value at address’ Assignment in C * = ‘value at address’
or ‘dereference’ or ‘dereference’
m Left-hand-side = right-hand-side; m Left-hand-side = right-hand-side;
® | HS must evaluate to a memory location. ® | HS must evaluate to a memory location.
® RHS must evaluate to a value. (could be an address!) ® RHS must evaluate to a value. (could be an address!)
= Store RHS value at LHS location. = Store RHS value at LHS location.
m intx,y; 0x00 m intx,vy; 0x00
03 27 DO 3C| Ox04 x 03 27 DO 3C| Ox04 x
= x=0; 0x08 = x=0; 0x08
m y=0x3CD02700; 0x0C m y=0x3CD02700; 0x0C
0x10 0x10
mX=y+3; Ox14 mX=Yy+3; 0x14
= // Getvalue aty, add 3, put itin x. 00 27 DO 3C| Ox18 vy = // Getvalue aty, add 3, put itin x. 00 27 DO 3C| Ox18 vy
m int*z 0x1C m int*z=8&y+3; 0x1C
81%2 z = // Get address of y, add ???, putitin z. 81%2 z

Autumn 2013 Memory & data 35 Autumn 2013 Memory & data 36

& = ‘address of’
* = ‘value at address’
or ‘dereference’

Assignment in C

m Left-hand-side = right-hand-side;
® | HS must evaluate to a memory location.
® RHS must evaluate to a value. (could be an address!)
= Store RHS value at LHS location.

m intx,y; 0x00
03 27 DO 3C| 0x04 x

m x=0; 0x08

CIVER)'e{er 1P} Pointer arithmetic 8)((1)8

X

mX=y+3; can be dangerous. Ox1d
= // Getvalue affPadd 3, put it in x. 00 27 DO 3C| Ox18 vy

mint*z=8&y+3; 0x1C
= // Get address of y, add 12, put it in z. 24 00 00 00 81%2 ‘

[Pointer arithmetic is scaled by size of target type.]

Autumn 2013 Memory & data 37

& = ‘address of’
* = ‘value at address’
or ‘dereference’

Assignment in C

m Left-hand-side = right-hand-side;
® | HS must evaluate to a memory location.
® RHS must evaluate to a value. (could be an address!)
= Store RHS value at LHS location.

m intx,y; 0x00
0 03 27 DO 3C| 0x04 «x

m x=0;)) 0x08

m y=0x3C The target of a pomtgr is 0x0C

also a memory location. 0x10

mX=y+3; 0x14
" // Getv. 7add 3, putitin x. 00 27 DO 3C| 0x18 vy

m int*zs Ox1C
. L 24 00 00 00| Ox20 =z

et address of y, add 12, putitin z. 00 27 DO 3C| 0x24

m *z=vy;

= // Get value of y, put it at the address stored in z.

Autumn 2013 Memory & data 39

& = ‘address of’
* = ‘value at address’
or ‘dereference’

Assignment in C

m Left-hand-side = right-hand-side;
® | HS must evaluate to a memory location.
® RHS must evaluate to a value. (could be an address!)
= Store RHS value at LHS location.

m intx,y; 0x00
03 (27 DO 3C| Ox04 «x

= x=0; 0x08

m y=0x3CD02700; 0x0C

_ 3. 0x10

" XSV 0x14
= // Getvalue aty, add 3, put it in x. 00 27 DO 3C| 0x18 vy

" inttz=Ey+3; 24 00 00 00 8)(;8
. . X z

// Get address of y, add 12, put itin z. 0x24

= *z=y;

= // What does this do?

Autumn 2013 Memory & data 38

University of Washington
Arrays are adjacent locations in memory
storing the same type of data object.

a is a name for the array’s address,
not a pointer to the array.

Arraysin C

Declaration: int a[6];

element type

number of

elements

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

40
Autumn 2013 Memory & data

N Arrays are adjacent locations in memory
Aﬂ'aVS In C storing the same type of data object.
Declaration: int a[6]; a is a name for the array’s address,
not a pointer to the array.

Arraysin C

Declaration: int a[6];

University of Washington

Arrays are adjacent locations in memory
storing the same type of data object.

a is a name for the array’s address,

not a pointer to the array.

Indexing: a[0] = 0x015f; The address of a[i] is the address of a[0] Indexing: a[0] = 0x015f; The address of a[i] is the address of a[0]
a[5] = a[0]; plus i times the element size in bytes. a[5] = a[0]; plus i times the element size in bytes.
No bounds a[6] = OxBAD;
check: a[-1] = OxBAD;
0x00 AD 0B (00 00| 0x00
5F 01 00 00| 0x04 a[0] 5F 01 00 00| 0x04 a[0]
0x08 a[1] 0x08 a[1]
0x0C 0x0C
0x10 - 0x10
0x14 0x14
S5F_01 00 00| ox18 al5] SF_01 00 00] ox18 al5]
0x1C AD OB 00 00| ox1C
0x20 0x20
0x24 0x24

a1 a2
Autumn 2013 Memory & data Autumn 2013 Memory & data

University of Washington University of Washington

Arraysin C

Declaration:

Indexing:

No bounds
check:
Pointers:

Autumn 2013

int a[6];

a[0] = 0x015f;
a[5] = a[0];
a[6] = OxBAD;
a[-1] = OXBAD;

int* p;
p=a;
p = &a[0];

Arrays are adjacent locations in memory
storing the same type of data object.

a is a name for the array’s address,

not a pointer to the array.

The address of ali] is the address of a[0]
plus i times the element size in bytes.

AD OB 00 00| 0x00

5F 01 00 00| ox04 a[0]
0x08 a[1]
0x0C
0x10
0x14

5F 01 00 00| 0x18 a[5]
AD OB 00 00| Ox1C

04 00 00 _00] 0x20 p
0x24

a3

Memory & data

Arraysin C

Declaration:

Indexing:

No bounds
check:
Pointers:

Autumn 2013

int a[6];

a[0] = 0x015f;
a[5] = a[0];
a[6] = OxBAD;
a[-1] = OXBAD;
int* p;

p=a;

p = &a[0];

*p = OXA;

Arrays are adjacent locations in memory
storing the same type of data object.

a is a name for the array’s address,

not a pointer to the array.

The address of ali] is the address of a[0]
plus i times the element size in bytes.

AD OB 00 00| 0x00

5F 01 00 00| ox04 a[0]
0x08 a[1]
0x0C
0x10
0x14

5F 01 00 00| ox18 a[5]
AD OB 00 00| Ox1C

04 00 00 _00] 0x20 p
0x24

a

Memory & data

University of Washington

Arraysin C

Declaration: int a[6];
Indexing: a[0] = 0x015f;

a[5] = a[0];
No bounds a[6] = OxBAD;
check: a[-1] = 0xBAD;
Pointers: int* p;

pP=2a;

p = &a[0];

*p = OXA;

Autumn 2013

University of Washington

Arraysin C

Arrays are adjacent locations in memory
storing the same type of data object.

a is a name for the array’s address,

not a pointer to the array.

The address of ali] is the address of a[0]
plus i times the element size in bytes.

AD 0B .00 .00]| 0x00

0A 00 00 00| ox04 a[0]
0x08 a[1]
0x0C
0x10
0x14

5F 01 00 00| ox18 a[5]

AD: 0B 00 00| ox1C

04 00 00 00} ox20 p
0x24

a5

Memory & data

Arrays are adjacent locations in memory
storing the same type of data object.

Declaration: int a[6]; a is a name for the array’s address,
. not a pointer to the array.
Indexing: a[0] = 0x015f; The address of ali] is the address of a[0]
a[5] = a[0]; plus i times the element size in bytes.
No bounds a[6] = OxBAD;
check: a[-1] = OxBAD;
. . sk L AD OB 00 00| 0x00
Pointers: mt_ |:.), 0A 00 00 00| 0x04 a[0]
p=3; 0B _00_00 00| 0x08 a[1]
p = &a[0]; 0x0C
*p = OxA; 0x10
p[1] = OxB; 0x14
SF_01 00 00| ox18 a[5]
AD 0B 00 00| oxiC
04 00 00 00| 0x20 p
array indexing = address arithmetic 0x24
Both are scaled by the size of the type.

Autumn 2013

a7

Memory & data

University of Washington

Arraysin C
Declaration: int a[6];
Indexing: a[0] = 0x015f;

a[5] = a[0];
a[6] = OxBAD;
a[-1] = OXBAD;
int* p;

pP=2a;

p = &a[0];

*p = OXA;

p[1] = OxB;

No bounds
check:
Pointers:

Autumn 2013

Arrays are adjacent locations in memory
storing the same type of data object.

a is a name for the array’s address,

not a pointer to the array.

The address of ali] is the address of a[0]
plus i times the element size in bytes.

AD:0B 00 ;00| 0x00

0A 00 00 00| 0x04 a[0]

0B 00 00 00| ox08 a[1]
0x0C
0x10
0x14

5F 01 00 00| ox18 a[5]

AD OB 00 00| 0Ox1C

04 00 00 00| 0x20 p
0x24

a6

Memory & data

University of Washington

Arraysin C
Declaration: int a[6];
Indexing: a[0] = 0x015f;

a[5] = a[0];

Arrays are adjacent locations in memory
storing the same type of data object.

a is a name for the array’s address,

not a pointer to the array.

The address of ali] is the address of a[0]
plus i times the element size in bytes.

No bounds a[6] = OxBAD;
check: a[-1] = OxBAD;
. . sk L AD 0B 00 :00| 0x00
Pointers: mt_ |:.), 0A 00 00 00| 0x04 a[0]
p=a; 0B _00_00 00| 0x08 a[1]
p = &a[0]; 0x0C
*p = OxA; 0x10
p[1] = OxB; 0x14
*(p + 1) = OXB; S5F .01 00 00| ox18 a[5]
¢ AD OB 00 00| 0Ox1C
04 00 00 00} ox20 p
array indexing = address arithmetic 0x24
Both are scaled by the size of the type.

Autumn 2013

a8

Memory & data

University of Washington

Arraysin C

Arrays are adjacent locations in memory
storing the same type of data object.

Declaration: int a[6]; a is a name for the array’s address,
. not a pointer to the array.

Indexing: a[0] = 0x015f; The address of ali] is the address of a[0]
a[5] = a[0]; plus i times the element size in bytes.

No bounds a[6] = OxBAD;

check: a[-1] = 0xBAD;

. . sk L AD. OB 00 00| 0x00

Pointers: mt_ |:.), 0A 00 00 00| 0x04 a[0]
p=3a; 0B _00_00 00| 0x08 a[1]
p = &a[0]; 0x0C
*p = OXA; 0x10
p[1] = OxB; 0x14
*(p + 1) = OXB; S5F 01 00 00] ox18 al5]

! AD 0B 00 00 oxiC
pP=p+2; 04 00 _00_00] 0x20 p
array indexing = address arithmetic 0x24
Both are scaled by the size of the type.

Autumn 2013

University of Washington

Arraysin C

a9

Memory & data

Arrays are adjacent locations in memory
storing the same type of data object.

Declaration: int a[6]; a is a name for the array’s address,
. not a pointer to the array.

Indexing: a[0] = 0x015f; The address of ali] is the address of a[0]
a[5] = a[0]; plus i times the element size in bytes.

No bounds a[6] = OxBAD;

check: a[-1] = OxBAD;

. . sk L AD. OB 00 00| 0x00

Pointers: mt_ |:.), 0A 00 00 00| 0x04 a[0]
p=3; 0B _00_00 00| 0x08 a[1]
p = &a[0]; 0C 00 00 00| o0x0C
*p = OxA; 0x10
p[1] = OxB; 0x14
*(p + 1) = OXB; S5F 01 .00 00| ox18 a[5]

’ AD 0B 00 00| oxiC
pP=p+2; 0C 00 _00_00] 0x20 p
array indexing = address arithmetic 0x24
Both are scaled by the size of the type.

*p=a[l1] +1;

Autumn 2013

Memory & data

University of Washington

Arraysin C

Arrays are adjacent locations in memory
storing the same type of data object.

Declaration: int a[6]; a is a name for the array’s address,
. not a pointer to the array.

Indexing: a[0] = 0x015f; The address of ali] is the address of a[0]
a[5] = a[0]; plus i times the element size in bytes.

No bounds a[6] = OxBAD;

check: a[-1] = OxBAD;

. . sk L AD. OB 00 00| 0x00

Pointers: mt_ |:.), 0A 00 00 00| 0x04 a[0]
p=3a; 0B _00_00 00| 0x08 a[1]
p = &a[0]; 0x0C
*p = OxA; 0x10
p[1] = OxB; 0x14
*(p + 1) = OXB; 5F 01 00 00] 0x18 a[5]

! AD 0B 00 00| oxiC
P=p+2; 0C_00_00_00] 0x20 p
array indexing = address arithmetic 0x24
Both are scaled by the size of the type.

Autumn 2013

Memory & da

ta

University of Washington

Representing strings

m A C-style string is represented by an array of bytes (char).

— Elements are one-byte ASCII codes

for each character.

— ASCIl = American Standard Code for Information Interchange

32 space | | 48 0 64 @| | 80
33 ! 49 1 65 Al |81
34 7 50 2| |66 B| |82
35 # 51 3] |67 c| |83
36 S 52 4] | 68 D| | 84
37 % 53 5] |69 E| |85
38 & 54 6| |70 F| |86
39 § 55 71 |71 G| |87
40 (56 8|72 Hf | 88
41) 57 91173 | 89
42 * 58 : 74 J] |90
43 + 59 ; 75 K| |91
44 s 60 < 76 L] |92
45 61 =177 M| |93
46 . 62 > 78 N[| 94
47 / 63 ? 79 0] |95

P 96 112 p
Q 97 a 113 q
R 98 b 114 r
S 99 c 115 s
T 100 d 116 t
u 101 e 117 u
\% 102 f 118 \
w 103 g 119 w
X 104 h 120 X
Y 105 | 121 y
z 106 j 122 z
[107 k 123 {
\ 108 l 124 |
] 109 m 125 3
~ 110 n 126 -
— 111 o 127 del

Autumn 2013

Memory & data 52

University of Washington

Null-terminated Strings
m For example, “Harry Potter” can be stored as a 13-byte array.
| 72 | 97 | 114| 114| 121| 32 | 80 | 111 | 116| 116| 101 | 114| 0 |
H a r r y P o t t e r \0

m Why do we put a 0, or null zero, at the end of the string?
= Note the special symbol: string[12] = '\0';

m How do we compute the string length?

Autumn 2013 Memory & data 53

University of Washington

Examining Data Representations

m Code to print byte representation of data

= Any data type can be treated as a byte array by casting it to char
® C has unchecked casts. << DANGER >>

typedef char byte; // size of char == 1 byte

void show_bytes (byte* start, int len) {
int i;
for (i = 0; 1 < len; i++)
printf ("%p\t0x%.2x\n", start+i, *(start+i));
printf ("\n") ;

}
printf directives:
void show_int (int x) { %p Print pointer
show_bytes((byte *) &x, sizeof(int)); \t Tab
} %x Print value as hex

\n New line

Autumn 2013 Memory & data 55

University of Washington

Endianness and Strings

C (char = 1 byte) Java (char = 2 bytes)

char s[6] = "12345"; String s = "123";
(not all of the Stningifépresentation is shown)

1A32, x86-64 SPARC 1A32, x86-64 SPARC

31 31 31 00

32 32 00 - a1

33 33 32 00

34 34 0 3

35 35 33 00

00 00 00 >< 33

m Byte ordering (endianness) is not an issue for 1-byte values.
= Arrays are not values; elements are values; chars are single bytes.
m Unicode characters — up to 4 bytes/character

= ASCII codes still work (just add leading zeros).
Unicode can support the many characters in all languages in the world.

= Java and C have libraries for Unicode (Java commonly uses 2 bytes/char)

Autumn 2013 Memory & data 54

University of Washington

show_ bytes Execution Example

int a = 12345; // represented as 0x00003039
printf("int a = 12345;\n");

show_int (a) g // show bytes((pointer) &a, sizeof(int));

Result (Linux):

int a = 12345;

O0x11ffffcb8 0x39
Ox11ffffcb9 0x30
Ox11ffffcba 0x00
0x11ffffcbb 0x00

Autumn 2013 Memory & data 56

University of Washington

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic
= Encode “True” as 1 and “False” as 0
= AND: A&B=1whenboth Ais1andBis1
" OR:A|B=1wheneitherAislorBis1
= XOR: A"B =1 when either Ais 1 or Bis 1, but not both
= NOT:~A =1 when Ais 0 and vice-versa
= DeMorgan’s Law: ~(A | B)=~A & ~B

&[0 1 1|0 1 Ao ~|
o‘oo 0‘01 0}01 0‘1
10 1 101 1 11 110

Autumn 2013 Memory & data 57

University of Washington

Representing & Manipulating Sets

m Representation
= A w-bit vector represents subsets of {0, ..., w—1}
= a=1iffj EA

01101001 {0,3,56}
76543210
01010101 {0,2,4,6}
76543210
m Operations
= & Intersection 01000001 {0,6}
= Union 01111101 {0,2,3,4,5,6}
= A Symmetric difference 00111100 {2,3,4,5}
= ~ Complement 10101010 {1,3,5,7}

Autumn 2013 Memory & data 59

University of Washington

General Boolean Algebras

m Operate on bit vectors
= Qperations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 A 01010101 ~ 01010101
01000001 01111101 00111100 10101010

m All of the properties of Boolean algebra apply

01010101
201010101
00000000

m How does this relate to set operations?

Autumn 2013 Memory & data 58

University of Washington

Bit-Level Operations in C

m & | A"
= Apply to any “integral” data type
* long, int, short, char, unsigned
= View arguments as bit vectors
m Examples (char data type)
" ~0x41 --> OxBE
~01000001, --> 10111110,
= ~0x00 --> OxFF
~00000000, --> 11111111,
= 0x69 & 0x55 --> 0x41
01101001, & 01010101, --> 01000001,
= 0x69 | 0x55 --> O0x7D
01101001, | 01010101, --> 01111101,

m Some bit-twiddling puzzles in Lab 1

Autumn 2013 Memory & data 60

Contrast: Logic Operations in C

m Contrast to logical operators
=& || !
= Ois “False”
= Anything nonzero is “True”
= Always return O or 1
= Early termination a.k.a. short-circuit evaluation

m Examples (char data type)
" 10x41 --> 0x00
= 10x00 --> O0x01
= 110x41 --> 0x01

" 0x69 && 0x55 --> 0x01
= 0x69 || 0x55 --> 0x01
" p && *p++ (avoids null pointer access, null pointer = 0x00000000)

Autumn 2013 Memory & data

