
Question 5) 

CT CT CT CT CI CI CO CO 

C = 16 bytes, E = 1, B = 4 bytes, S = 4 sets 
b = 2, s = 2 (2 block offset bits, 2 set index bits) 
 
Picture: don’t forget dirty (write-back) and valid bits (always) 
 
Read 0x01: miss, load set 0 (tag = 0000) with first 4 bytes of memory {0,1,2,3}, read value {1}, set valid 
bit for set 0 
Write 0x07, 6: miss, load set 1 with {4,5,6,7} and overwrite byte 3, giving {4,5,6,6}, set dirty bit for set 1, 
set valid bit for set 1 
Read 0x06: hit, read byte 2 of set 1 = read {6} 
Write 0x06, 7: hit, write to byte 2 of set 1, giving {4,5,7,6} 
Read 0x20: miss on set 0 (tag 0010 != tag 0000), evict set 0 (no need to write since dirty bit not set), load 
new set 0 {32, 33, 34, 35}, read byte 0 with value {32} 
 
2 accesses were hits, 3 were misses 
 
Question 6) 
1) True 
2) 8 sets 
 
3) i) uses main memory efficiently by treating it as a cache for an address space (caching) 
ii) simplifies memory management by providing each process with a uniform address space 
(management) 
iii) protects address space of each process from corruption by other processes (protection) 
 
4) Temporal locality: recently referenced items are likely to be referenced again in the near future 
Spatial locality: items with nearby addresses tend to be referenced close together in time 
 
6) One plausible example: After the first free (by A), the allocator may allocate the same block for some 
other request (by B). Now, A frees the block again, but B has no knowledge of this and believes it owns 
the block. Now, C makes a request and receives the block from the allocator. At this point, both B and C 
believe they own the block and a write by one will possibly corrupt the other’s data. **A, B, and C are all 
entities in the same Process/Address Space (think different functions) 
 
7) miss rate = 100% 
  
8) i) and iii). These create a pointer ip, and assign the address a + 3 (or identically &a[3]) to it. ii) 
dereferences the value stored at a[0], adds 3 to it, and then assigns the result to ip. 
 
Question 7) 
1) On a write-hit in the cache, after updating the block being written to, write-through immediately 
writes the block to the next lower level of the cache hierarchy. Write-back defers the update to the 
lower level until the block is evicted, and simply sets a dirty bit indicating that its copy is newer than the 
lower level cache. 
2) False 
3) False 



4) True 
5) sizeof(struct test) = 32 bytes 
Starting addresses: {0, 4, 6, 16, 24} 
6) 16, 3, 11, 12345 


