
University of Washington 

Roadmap 
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car *c = malloc(sizeof(car)); 

c->miles = 100; 

c->gals = 17; 

float mpg = get_mpg(c); 

free(c); 

Car c = new Car(); 

c.setMiles(100); 

c.setGals(17); 

float mpg = 

    c.getMPG(); 

get_mpg: 

    pushq   %rbp 

    movq    %rsp, %rbp 

    ... 

    popq    %rbp 

    ret 

Java: C: 

Assembly 
language: 

Machine 
code: 

0111010000011000 

100011010000010000000010 

1000100111000010 

110000011111101000011111 

Computer 
system: 

OS: 

Memory & data 
Integers & floats 
Machine code & C 
x86 assembly 
Procedures & stacks 
Arrays & structs 
Memory & caches 
Processes 
Virtual memory 
Memory allocation 
Java vs. C 

Autumn 2014 Virtual Memory 



University of Washington 

Virtual Memory (VM) 

 Overview and motivation 

 VM as tool for caching 

 Address translation 

 VM as tool for memory management 

 VM as tool for memory protection 
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Again: Processes 

 Definition: A process is an instance of a running program 
 One of the most important ideas in computer science 

 Not the same as “program” or “processor” 

 

 Process provides each program with two key abstractions: 
 Logical control flow 

 Each process seems to have exclusive use of the CPU 

 Private virtual address space 

 Each process seems to have exclusive use of main memory 

 

 How are these illusions maintained? 
 Process executions interleaved (multi-tasking) – done… 

 Address spaces managed by virtual memory system – now! 
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Memory as we know it so far… is virtual! 

 Programs refer to virtual memory addresses 
 movl (%ecx),%eax 

 Conceptually memory is just a very large array of bytes 

 Each byte has its own address 

 System provides address space private to particular “process” 

 Allocation: Compiler and run-time system 
 Where different program objects should be stored 

 All allocation within single virtual address space 

 But… 
 We probably don’t have exactly 2w bytes of physical memory. 

 We certainly don’t have 2w bytes of physical memory 
for every process. 

 We have multiple processes that usually should not 
interfere with each other, but sometimes should share code or data. 
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FF∙∙∙∙∙∙F 

00∙∙∙∙∙∙0 
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Problem 1: How Does Everything Fit? 
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64-bit virtual addresses can address 
several exabytes 

(18,446,744,073,709,551,616 bytes) 

Physical main memory offers 
a few gigabytes 

(e.g. 8,589,934,592 bytes) 

? 

1 virtual address space per process, 
with many processes… 

(Actually, physical memory is smaller than  
the period at the end of this sentence  
compared to the virtual address space.) 
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Problem 2: Memory Management 
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Physical main memory 

What goes 

where? 

stack 
heap 
.text 

.data 

… 

Process 1 
Process 2 
Process 3 
… 
Process n 

x 
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Each process has… 
We have multiple  
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Problem 3: How To Protect 

7 

Physical main memory 

Process i 

Process j 

Problem 4: How To Share? 
Physical main memory 

Process i 

Process j 
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How can we solve these problems? 

 Fitting a huge address space into a tiny physical memory 

 Managing the address spaces of multiple processes 

 Protecting processes from stepping on each other’s memory 

 Allowing processes to share common parts of memory 
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Indirection 

 “Any problem in computer science can be solved by adding another level 
of indirection.” –David Wheeler, inventor of the subroutine (a.k.a. procedure) 

 
 

 Without Indirection 

 

 

 With Indirection 

Name 
Thing 

Name 
Thing 

9 

What if I want to move Thing? 
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Indirection 

 Indirection: the ability to reference something using a name, reference, or 
container instead the value itself. A flexible mapping between a name and 
a thing allows changing the thing without notifying holders of the name. 

 

 Without Indirection 

 

 

 With Indirection 

 

 Examples of indirection:  
 Domain Name Service (DNS): translation from name to IP address 

 phone system: cell phone number portability 

 snail mail: mail forwarding 

 911: routed to local office 

 Dynamic Host Configuration Protocol (DHCP): local network address assignment 

 call centers: route calls to available operators, etc. 

Name 
Thing 

Name 
Thing 

Thing 
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Indirection in Virtual Memory 

11 

 Each process gets its own private virtual address space 

 Solves the previous problems 

Physical memory 

Virtual memory 

Virtual memory 

Process 1 

Process n 

mapping 
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Address Spaces 

 Virtual address space: Set of N = 2n virtual addresses 
  {0, 1, 2, 3, …, N-1} 

 

 Physical address space: Set of M = 2m physical addresses (n >= m) 
  {0, 1, 2, 3, …, M-1} 

 

 Every byte in main memory has: 
 one physical address 

 zero, one, or more virtual addresses 
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Mapping 

P2’s Virtual Address Space 

Physical 
Memory 

Disk 

A virtual address can be 
mapped to either physical 
memory or disk. 

13 

P1’s Virtual Address Space 
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A System Using Physical Addressing 

14 

 Used in “simple” systems with (usually) just one process: 
 embedded microcontrollers in devices like cars, elevators, and digital 

picture frames 

0: 
1: 

M-1: 

Main memory 

CPU 

2: 
3: 
4: 
5: 
6: 
7: 

Physical address 
(PA) 

Data word 

8: ...
 

4 
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A System Using Virtual Addressing 
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 Physical addresses are completely invisible to programs. 

 Used in all modern desktops, laptops, servers, smartphones… 

 One of the great ideas in computer science 

 

0: 
1: 

M-1: 

Main memory 

MMU 

2: 
3: 
4: 
5: 
6: 
7: 

Physical address 
(PA) 

Data word 

8: ...
 

CPU 

Virtual address 
(VA) 

CPU Chip 

4 4100 

Memory Management Unit 
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Why Virtual Memory (VM)? 

 Efficient use of limited main memory (RAM) 
 Use RAM as a cache for the parts of a virtual address space 

 some non-cached parts stored on disk 

 some (unallocated) non-cached parts stored nowhere 

 Keep only active areas of virtual address space in memory 

 transfer data back and forth as needed 

 Simplifies memory management for programmers 
 Each process gets the same full, private linear address space 

 Isolates address spaces 
 One process can’t interfere with another’s memory  

 because they operate in different address spaces 

 User process cannot access privileged information 

 different sections of address spaces have different permissions 
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VM and the Memory Hierarchy 

 Think of virtual memory as array of N = 2n contiguous bytes. 

 Pages of virtual memory are usually stored in physical 
memory, but sometimes spill to disk. 
 Pages are another unit of aligned memory (size is P = 2p bytes) 

 Each virtual page can be stored in any physical page. 

17 

PP 2m-p-1 

Physical memory 

Empty 

Empty 

Uncached 

VP 0 

VP 1 

VP 2n-p-1 

Virtual memory 

Unallocated 

Cached 

Uncached 

Unallocated 

Cached 

Uncached 

PP 0 

PP 1 

Empty 

Cached 

0 

2n-1 

2m-1 

0 

Virtual pages (VP's)  
stored on disk 

Physical pages (PP's)  
cached in DRAM 

Disk 
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or: Virtual Memory as DRAM Cache for Disk 

 Think of virtual memory as an array of N = 2n contiguous 
bytes stored on a disk. 

 Then physical main memory is used as a cache for the 
virtual memory array 
 The cache blocks are called pages (size is P = 2p bytes) 

PP 2m-p-1 

Physical memory 

Empty 

Empty 

Uncached 

VP 0 

VP 1 

VP 2n-p-1 

Virtual memory 

Unallocated 

Cached 

Uncached 

Unallocated 

Cached 

Uncached 

PP 0 

PP 1 

Empty 

Cached 

0 

N-1 

M-1 

0 

Virtual pages (VPs)  
stored on disk 

Physical pages (PPs)  
cached in DRAM 
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Memory Hierarchy: Core 2 Duo 

19 

Disk 

Main 
Memory 

L2 
unified 
cache 

L1  
I-cache 

L1  
D-cache 

CPU Reg 

2 B/cycle 8 B/cycle 16 B/cycle 1 B/30 cycles Throughput: 

Latency: 100 cycles 14 cycles 3 cycles millions 

~4 MB 

32 KB 

~4 GB ~500 GB 

Not drawn to scale  

Miss penalty (latency): 33x 

Miss penalty (latency): 10,000x 

SRAM 
Static Random Access Memory 

DRAM 
Dynamic Random Access Memory 
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Virtual Memory Design Consequences 

 Large page size: typically 4-8 KB, sometimes up to 4 MB 

 Fully associative  
 Any virtual page can be placed in any physical page 

 Requires a “large” mapping function – different from CPU caches 

 Highly sophisticated, expensive replacement algorithms in OS 
 Too complicated and open-ended to be implemented in hardware 

 Write-back rather than write-through 
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Address Translation 
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How do we perform the  virtual -> physical address 
translation? 

0: 
1: 

M-1: 

Main memory 

MMU 

2: 
3: 
4: 
5: 
6: 
7: 

Physical address 
(PA) 

Data word 

8: ...
 

CPU 

Virtual address 
(VA) 

CPU Chip 

4 4100 
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Address Translation: Page Tables 

 A page table is an array of page table entries (PTEs) that 
maps virtual pages to physical pages. 

22 

null 

null 

Memory resident 
page table 

(DRAM) 

Physical memory 
(DRAM) 

VP 7 
VP 4 

Virtual memory 
(disk) 

Valid 
0 

1 

0 
1 

0 

1 

0 

1 

Physical page 
number or  

disk address 
PTE 0 

PTE 7 

PP 0 
VP 2 

VP 1 

PP 3 

VP 1 

VP 2 

VP 4 

VP 6 

VP 7 

VP 3 

How many page tables are in the system? 
One per process 

stored in physical memory 
managed by HW (MMU), OS 
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Address Translation With a Page Table 
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Virtual page number (VPN) Virtual page offset (VPO) 

Physical page number (PPN) Physical page offset (PPO) 

Virtual address (VA) 

Physical address (PA) 

Valid Physical page number (PPN) 

Page table  
base register 

(PTBR) 

Page table  Page table address  
for process 

Valid bit = 0: 
page not in memory 

(page fault) 

In most cases, the hardware 
(the MMU) can perform this 
translation on its own, 
without software assistance 

This feels familiar… 
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Page Hit 

 Page hit: reference to VM byte that is in physical memory 

null 

null 

Memory resident 
page table 

(DRAM) 

Physical memory 
(DRAM) 

VP 7 
VP 4 

Virtual memory 
(disk) 

Valid 
0 

1 

0 
1 

0 

1 

0 

1 

Physical page 
number or  

disk address 
PTE 0 

PTE 7 

PP 0 
VP 2 

VP 1 

PP 3 

VP 1 

VP 2 

VP 4 

VP 6 

VP 7 

VP 3 

Virtual address 
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Page Fault 

 Page fault: reference to VM byte that is NOT in physical 
memory  
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null 

null 

Memory resident 
page table 

(DRAM) 

Physical memory 
(DRAM) 

VP 7 
VP 4 

Virtual memory 
(disk) 

Valid 
0 

1 

0 
1 

0 

1 

0 

1 

Physical page 
number or  

disk address 
PTE 0 

PTE 7 

PP 0 
VP 2 

VP 1 

PP 3 

VP 1 

VP 2 

VP 4 

VP 6 

VP 7 

VP 3 

Virtual address 

What happens when a page 
fault occurs? 
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 User writes to memory location 

 That portion (page) of user’s memory  
is currently on disk 

 

 

 

 

 

 

 

 

 Page fault handler must load page into physical memory 

 Returns to faulting instruction: mov is executed again! 

 Successful on second try 

int a[1000]; 

main () 

{ 

    a[500] = 13; 

} 

 80483b7: c7 05 10 9d 04 08 0d  movl   $0xd,0x8049d10 

User Process OS 

exception: page fault 

Create page and  
load into memory returns 

movl 

26 

Fault Example: Page Fault 

Autumn 2014 Virtual Memory 



University of Washington 

Handling Page Fault 
 Page miss causes page fault (an exception) 

null 

null 

Memory resident 
page table 

(DRAM) 

Physical memory 
(DRAM) 

VP 7 
VP 4 

Virtual memory 
(disk) 

Valid 
0 

1 

0 
1 

0 

1 

0 

1 

Physical page 
number or  

disk address 
PTE 0 

PTE 7 

PP 0 
VP 2 

VP 1 

PP 3 

VP 1 

VP 2 

VP 4 

VP 6 

VP 7 

VP 3 

Virtual address 
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Handling Page Fault 
 Page miss causes page fault (an exception) 

 Page fault handler selects a victim to be evicted (here VP 4) 

null 

null 

Memory resident 
page table 

(DRAM) 

Physical memory 
(DRAM) 

VP 7 
VP 4 

Virtual memory 
(disk) 

Valid 
0 

1 

0 
1 

0 

1 

0 

1 

Physical page 
number or  

disk address 
PTE 0 

PTE 7 

PP 0 
VP 2 

VP 1 

PP 3 

VP 1 

VP 2 

VP 4 

VP 6 

VP 7 

VP 3 

Virtual address 
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Handling Page Fault 
 Page miss causes page fault (an exception) 

 Page fault handler selects a victim to be evicted (here VP 4) 

null 

null 

Memory resident 
page table 

(DRAM) 

Physical memory 
(DRAM) 

VP 7 
VP 3 

Virtual memory 
(disk) 

Valid 
0 

1 

1 
0 

0 

1 

0 

1 

Physical page 
number or  

disk address 
PTE 0 

PTE 7 

PP 0 
VP 2 

VP 1 

PP 3 

VP 1 

VP 2 

VP 4 

VP 6 

VP 7 

VP 3 

Virtual address 
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Handling Page Fault 
 Page miss causes page fault (an exception) 

 Page fault handler selects a victim to be evicted (here VP 4) 

 Offending instruction is restarted: page hit! 

null 

null 

Memory resident 
page table 

(DRAM) 

Physical memory 
(DRAM) 

VP 7 
VP 3 

Virtual memory 
(disk) 

Valid 
0 

1 

1 
0 

0 

1 

0 

1 

Physical page 
number or  

disk address 
PTE 0 

PTE 7 

PP 0 
VP 2 

VP 1 

PP 3 

VP 1 

VP 2 

VP 4 

VP 6 

VP 7 

VP 3 

Virtual address 
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Why does it work?   
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Why does VM work on RAM/disk? Locality. 

 Virtual memory works well for avoiding disk accesses because 
of locality 
 Same reason that L1 / L2 / L3 caches work 

 

 The set of virtual pages that a program is “actively” accessing 
at any point in time is called its working set 
 

 If (working set size of one process < main memory size): 
 Good performance for one process (after compulsory misses) 

 But if 
SUM(working set sizes of all processes) > main memory size: 
 Thrashing: Performance meltdown where pages are swapped (copied) 

between memory and disk continuously.  CPU always waiting or paging. 
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VM for Managing Multiple Processes 
 Key abstraction: each process has its own virtual address space 

 It can view memory as a simple linear array 

 With virtual memory, this simple linear virtual address space 
need not be contiguous in physical memory 
 Process needs to store data in another VP? Just map it to any PP! 

34 

Virtual 
Address 
Space for 
Process 1: 

Physical  
Address  
Space 
(DRAM) 

0 

N-1 

(e.g., read-only  
library code) 

Virtual 
Address 
Space for 
Process 2: 

VP 1 

VP 2 
... 

0 

N-1 

VP 1 

VP 2 
... 

PP 2 

PP 6 

PP 8 

... 

0 

M-1 

Address  
translation 
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VM for Protection and Sharing 
 The mapping of VPs to PPs provides a simple mechanism to 

protect memory and to share memory between processes. 
 Sharing: just map virtual pages in separate address spaces to the same 

physical page (here: PP 6) 

 Protection: process simply can’t access physical pages to which none of 
its virtual pages are mapped (here: Process 2 can’t access PP 2). 
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Virtual 
Address 
Space for 
Process 1: 

Physical  
Address  
Space 
(DRAM) 

0 

N-1 

(e.g., read-only  
library code) 

Virtual 
Address 
Space for 
Process 2: 

VP 1 

VP 2 
... 

0 

N-1 

VP 1 

VP 2 
... 

PP 2 

PP 6 

PP 8 

... 

0 

M-1 

Address  
translation 
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Memory Protection Within a Single 
Process 
 Can we use virtual memory to control read/write/execute 

permissions? How? 
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Memory Protection Within a Single 
Process 
 Extend page table entries with permission bits 

 MMU checks these permission bits on every memory access 
 If violated, raises exception and OS sends SIGSEGV signal to process 

(segmentation fault) 

37 

Process i: Physical Page Num WRITE EXEC 

PP 6 No No 

PP 4 No Yes 

PP 2 Yes 

• 
• 
• 

Process j: 

No 

READ 

Yes 

No 

Yes 

WRITE EXEC 

PP 9 Yes No 

PP 6 No No 

PP 11 Yes No 

READ 

No 

Yes 

No 

VP 0: 

VP 1: 

VP 2: 

VP 0: 

VP 1: 

VP 2: 

Physical  
Address Space 

PP 2 

PP 4 

PP 6 

PP 8 

PP 9 

PP 11 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Valid 

Valid Physical Page Num 
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Terminology 

 context switch 
 Switch between processes on the same CPU 

 page in 
 Move pages of virtual memory from disk to physical memory 

 page out 
 Move pages of virtual memory from physical memory to disk 

 thrash 
 Total working set size of processes is larger than physical memory 

 Most time is spent paging in and out instead of doing useful computation 
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Address Translation: Page Hit 

39 

1) Processor sends virtual address to MMU (memory management unit) 

2-3) MMU fetches PTE from page table in cache/memory 
(Uses PTBR to find beginning of page table for current process) 

4) MMU sends physical address to cache/memory 

5) Cache/memory sends data word to processor 

MMU 
Cache/ 
Memory PA 

Data 

CPU 
VA 

CPU Chip 
PTEA 

PTE 
1 

2 

3 

4 

5 

Autumn 2014 Virtual Memory 

VA = Virtual Address          PTEA = Page Table Entry Address                                        PTE= Page Table Entry  
PA = Physical Address               Data = Contents of memory stored at VA originally requested by CPU  
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Address Translation: Page Fault 

40 

1) Processor sends virtual address to MMU  

2-3) MMU fetches PTE from page table in cache/memory 

4) Valid bit is zero, so MMU triggers page fault exception 

5) Handler identifies victim (and, if dirty, pages it out to disk) 

6) Handler pages in new page and updates PTE in memory 

7) Handler returns to original process, restarting faulting instruction 

MMU Cache/ 
Memory 

CPU 
VA 

CPU Chip 
PTEA 

PTE 

1 

2 

3 

4 

5 

Disk 

Page fault handler 

Victim page 

New page 

Exception 

6 

7 

Autumn 2014 Virtual Memory 



University of Washington 

Hmm… Translation Sounds Slow! 

 The MMU accesses memory twice: once to first get the PTE 
for translation, and then again for the actual memory request 
from the CPU 

 The PTEs may be cached in L1 like any other memory word 

 But they may be evicted by other data references 

 And a hit in the L1 cache still requires 1-3 cycles 

 

 What can we do to make this faster? 
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Speeding up Translation with a TLB 

 Solution: add another cache! 

 Translation Lookaside Buffer (TLB): 
 Small hardware cache in MMU 

 Maps virtual page numbers to  physical page numbers 

 Contains complete page table entries for small number of pages 

 Modern Intel processors: 128 or 256 entries in TLB 

 Much faster than a page table lookup in cache/memory 
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TLB Hit 

43 

MMU 
Cache/ 
Memory 

PA 

Data 

CPU 
VA 

CPU Chip 

PTE 

1 

2 

4 

5 

A TLB hit eliminates a memory access 

TLB 

VPN 3 
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TLB Miss 

44 

MMU 
Cache/ 
Memory PA 

Data 

CPU 
VA 

CPU Chip 

PTE 

1 

2 

5 

6 

TLB 

VPN 

4 

PTEA 

3 

A TLB miss incurs an additional memory access (the PTE) 
Fortunately, TLB misses are rare.   
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Simple Memory System Example (small) 
 Addressing 

 14-bit virtual addresses 

 12-bit physical address 

 Page size = 64 bytes 

45 

13 12 11 10 9 8 7 6 5 4 3 2 1 0 

11 10 9 8 7 6 5 4 3 2 1 0 

VPO 

PPO PPN 

VPN 

Virtual Page Number Virtual Page Offset 

Physical Page Number Physical Page Offset 
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Simple Memory System Page Table 

 Only showing first 16 entries (out of 256 = 28) 

 

 

 

 

 

 

 

 

 

 What about a real address space?  Read more in the book… 
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1 0D 0F 

1 11 0E 

1 2D 0D 

0 – 0C 

0 – 0B 

1 09 0A 

1 17 09 

1 13 08 

Valid PPN VPN 

0 – 07 

0 – 06 

1 16 05 

0 – 04 

1 02 03 

1 33 02 

0 – 01 

1 28 00 

Valid PPN VPN 
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Simple Memory System TLB 
 16 entries total 

 4 sets 

 4-way associative 
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13 12 11 10 9 8 7 6 5 4 3 2 1 0 

virtual page offset virtual page number 

TLB index TLB tag 

0 – 02 1 34 0A 1 0D 03 0 – 07 3 

0 – 03 0 – 06 0 – 08 0 – 02 2 

0 – 0A 0 – 04 0 – 02 1 2D 03 1 

1 02 07 0 – 00 1 0D 09 0 – 03 0 

Valid PPN Tag Valid PPN Tag Valid PPN Tag Valid PPN Tag Set 

TLB ignores page offset.  Why? 
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Simple Memory System Cache 
 16 lines, 4-byte block size 

 Physically addressed 

 Direct mapped 
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11 10 9 8 7 6 5 4 3 2 1 0 

physical page offset physical page number 

cache offset cache index cache tag 

03 DF C2 11 1 16 7 

– – – – 0 31 6 

1D F0 72 36 1 0D 5 

09 8F 6D 43 1 32 4 

– – – – 0 36 3 

08 04 02 00 1 1B 2 

– – – – 0 15 1 

11 23 11 99 1 19 0 

B3 B2 B1 B0 Valid Tag Index 

– – – – 0 14 F 

D3 1B 77 83 1 13 E 

15 34 96 04 1 16 D 

– – – – 0 12 C 

– – – – 0 0B B 

3B DA 15 93 1 2D A 

– – – – 0 2D 9 

89 51 00 3A 1 24 8 

B3 B2 B1 B0 Valid Tag Index 
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Current state of caches/tables 

03 DF C2 11 1 16 7 

– – – – 0 31 6 

1D F0 72 36 1 0D 5 

09 8F 6D 43 1 32 4 

– – – – 0 36 3 

08 04 02 00 1 1B 2 

– – – – 0 15 1 

11 23 11 99 1 19 0 

B3 B2 B1 B0 Valid Tag Index 

– – – – 0 14 F 

D3 1B 77 83 1 13 E 

15 34 96 04 1 16 D 

– – – – 0 12 C 

– – – – 0 0B B 

3B DA 15 93 1 2D A 

– – – – 0 2D 9 

89 51 00 3A 1 24 8 

B3 B2 B1 B0 Valid Tag Index 

Cache 

1 0D 0F 

1 11 0E 

1 2D 0D 

0 – 0C 

0 – 0B 

1 09 0A 

1 17 09 

1 13 08 

Valid PPN VPN 

0 – 07 

0 – 06 

1 16 05 

0 – 04 

1 02 03 

1 33 02 

0 – 01 

1 28 00 

Valid PPN VPN 

0 – 02 1 34 0A 1 0D 03 0 – 07 3 

0 – 03 0 – 06 0 – 08 0 – 02 2 

0 – 0A 0 – 04 0 – 02 1 2D 03 1 

1 02 07 0 – 00 1 0D 09 0 – 03 0 

Valid PPN Tag Valid PPN Tag Valid PPN Tag Valid PPN Tag Set 

TLB 

Page table (partial) 
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Address Translation Example #1 

Virtual Address: 0x03D4 
 

 

 

 
 

 

VPN ___ TLBI ___ TLBT ____           TLB Hit? __ Page Fault? __        PPN: ____ 

 
Physical Address 

 
 
 
 
 
 

 CO ___ CI___ CT ____      Hit? __              Byte: ____ 
 

Autumn 2014 51 Virtual Memory 

13 12 11 10 9 8 7 6 5 4 3 2 1 0 

VPO VPN 

TLBI TLBT 

11 10 9 8 7 6 5 4 3 2 1 0 

PPO PPN 

CO CI CT 

0 0 1 0 1 0 1 1 1 1 0 0 0 0 
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Address Translation Example #1 

Virtual Address: 0x03D4 
 

 

 

 
 

 

VPN ___ TLBI ___ TLBT ____           TLB Hit? __ Page Fault? __        PPN: ____ 

 
Physical Address 

 
 
 
 
 
 

 CO ___ CI___ CT ____      Hit? __              Byte: ____ 
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13 12 11 10 9 8 7 6 5 4 3 2 1 0 

VPO VPN 

TLBI TLBT 

11 10 9 8 7 6 5 4 3 2 1 0 

PPO PPN 

CO CI CT 

0 0 1 0 1 0 1 1 1 1 0 0 0 0 

0x0F 3 0x03 Y N 0x0D 

0 0 0 1 0 1 0 1 1 0 1 0 

0 0x5 0x0D Y 0x36 
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Address Translation Example #2 

Virtual Address: 0x0B8F 
 

 

 

 
 

 

VPN ___ TLBI ___ TLBT ____           TLB Hit? __ Page Fault? __        PPN: ____ 

 
Physical Address 

 
 
 
 
 
 

 CO ___ CI___ CT ____      Hit? __              Byte: ____ 
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13 12 11 10 9 8 7 6 5 4 3 2 1 0 

VPO VPN 

TLBI TLBT 

11 10 9 8 7 6 5 4 3 2 1 0 

PPO PPN 

CO CI CT 

1 1 1 1 0 0 0 1 1 1 0 1 0 0 
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Address Translation Example #2 

Virtual Address: 0x0B8F 
 

 

 

 
 

 

VPN ___ TLBI ___ TLBT ____           TLB Hit? __ Page Fault? __        PPN: ____ 

 
Physical Address 

 
 
 
 
 
 

 CO ___ CI___ CT ____      Hit? __              Byte: ____ 
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13 12 11 10 9 8 7 6 5 4 3 2 1 0 

VPO VPN 

TLBI TLBT 

11 10 9 8 7 6 5 4 3 2 1 0 

PPO PPN 

CO CI CT 

1 1 1 1 0 0 0 1 1 1 0 1 0 0 

0x2E 2 0x0B N ? TBD 
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Address Translation Example #3 

Virtual Address: 0x0020 
 

 

 

 
 

 

VPN ___ TLBI ___ TLBT ____           TLB Hit? __ Page Fault? __        PPN: ____ 

 
Physical Address 

 
 
 
 
 
 

 CO___ CI___ CT ____      Hit? __              Byte: ____ 
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13 12 11 10 9 8 7 6 5 4 3 2 1 0 

VPO VPN 

TLBI TLBT 

11 10 9 8 7 6 5 4 3 2 1 0 

PPO PPN 

CO CI CT 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 
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Address Translation Example #3 

Virtual Address: 0x0020 
 

 

 

 
 

 

VPN ___ TLBI ___ TLBT ____           TLB Hit? __ Page Fault? __        PPN: ____ 

 
Physical Address 

 
 
 
 
 
 

 CO___ CI___ CT ____      Hit? __              Byte: ____ 
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13 12 11 10 9 8 7 6 5 4 3 2 1 0 

VPO VPN 

TLBI TLBT 

11 10 9 8 7 6 5 4 3 2 1 0 

PPO PPN 

CO CI CT 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 

0x00 0 0x00 N N 0x28 

0 0 0 0 0 0 0 0 0 1 1 1 

0 0x8 0x28 N Mem 
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Summary 

 Programmer’s view of virtual memory 
 Each process has its own private linear address space 

 Cannot be corrupted by other processes 

 

 System view of virtual memory 
 Uses memory efficiently by caching virtual memory pages 

 Efficient only because of locality 

 Simplifies memory management and sharing 

 Simplifies protection by providing a convenient interpositioning point 
to check permissions 
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Memory System Summary 

 L1/L2 Memory Cache 
 Purely a speed-up technique 

 Behavior invisible to application programmer and (mostly) OS 

 Implemented totally in hardware 

 Virtual Memory 
 Supports many OS-related functions 

 Process creation, task switching, protection 

 Operating System (software) 

 Allocates/shares physical memory among processes 

 Maintains high-level tables tracking memory type, source, sharing 

 Handles exceptions, fills in hardware-defined mapping tables 

 Hardware 

 Translates virtual addresses via mapping tables, enforcing permissions 

 Accelerates mapping via translation cache (TLB) 
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Memory System – Who controls what? 

 L1/L2 Memory Cache 
 Controlled by hardware 

 Programmer cannot control it 

 Programmer can write code in a way that takes advantage of it 

 Virtual Memory 
 Controlled by OS and hardware 

 Programmer cannot control mapping to physical memory 

 Programmer can control sharing and some protection 

 via OS functions (not in CSE 351) 
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