
University of Washington

Roadmap

1

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

 c.getMPG();

get_mpg:

 pushq %rbp

 movq %rsp, %rbp

 ...

 popq %rbp

 ret

Java: C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

Autumn 2014 Virtual Memory

University of Washington

Virtual Memory (VM)

 Overview and motivation

 VM as tool for caching

 Address translation

 VM as tool for memory management

 VM as tool for memory protection

2 Autumn 2014 Virtual Memory

University of Washington

Again: Processes

 Definition: A process is an instance of a running program
 One of the most important ideas in computer science

 Not the same as “program” or “processor”

 Process provides each program with two key abstractions:
 Logical control flow

 Each process seems to have exclusive use of the CPU

 Private virtual address space

 Each process seems to have exclusive use of main memory

 How are these illusions maintained?
 Process executions interleaved (multi-tasking) – done…

 Address spaces managed by virtual memory system – now!

3 Autumn 2014 Virtual Memory

University of Washington

Memory as we know it so far… is virtual!

 Programs refer to virtual memory addresses
 movl (%ecx),%eax

 Conceptually memory is just a very large array of bytes

 Each byte has its own address

 System provides address space private to particular “process”

 Allocation: Compiler and run-time system
 Where different program objects should be stored

 All allocation within single virtual address space

 But…
 We probably don’t have exactly 2w bytes of physical memory.

 We certainly don’t have 2w bytes of physical memory
for every process.

 We have multiple processes that usually should not
interfere with each other, but sometimes should share code or data.

4

FF∙∙∙∙∙∙F

00∙∙∙∙∙∙0

Autumn 2014 Virtual Memory

University of Washington

Problem 1: How Does Everything Fit?

5

64-bit virtual addresses can address
several exabytes

(18,446,744,073,709,551,616 bytes)

Physical main memory offers
a few gigabytes

(e.g. 8,589,934,592 bytes)

?

1 virtual address space per process,
with many processes…

(Actually, physical memory is smaller than
the period at the end of this sentence
compared to the virtual address space.)

Autumn 2014 Virtual Memory

University of Washington

Problem 2: Memory Management

6

Physical main memory

What goes

where?

stack
heap
.text

.data

…

Process 1
Process 2
Process 3
…
Process n

x

Autumn 2014 Virtual Memory

Each process has…
We have multiple
processes:

University of Washington

Problem 3: How To Protect

7

Physical main memory

Process i

Process j

Problem 4: How To Share?
Physical main memory

Process i

Process j

Autumn 2014 Virtual Memory

University of Washington

How can we solve these problems?

 Fitting a huge address space into a tiny physical memory

 Managing the address spaces of multiple processes

 Protecting processes from stepping on each other’s memory

 Allowing processes to share common parts of memory

Autumn 2014 8 Virtual Memory

University of Washington

Indirection

 “Any problem in computer science can be solved by adding another level
of indirection.” –David Wheeler, inventor of the subroutine (a.k.a. procedure)

 Without Indirection

 With Indirection

Name
Thing

Name
Thing

9

What if I want to move Thing?

Autumn 2014 Virtual Memory

University of Washington

Indirection

 Indirection: the ability to reference something using a name, reference, or
container instead the value itself. A flexible mapping between a name and
a thing allows changing the thing without notifying holders of the name.

 Without Indirection

 With Indirection

 Examples of indirection:
 Domain Name Service (DNS): translation from name to IP address

 phone system: cell phone number portability

 snail mail: mail forwarding

 911: routed to local office

 Dynamic Host Configuration Protocol (DHCP): local network address assignment

 call centers: route calls to available operators, etc.

Name
Thing

Name
Thing

Thing

10 Autumn 2014 Virtual Memory

University of Washington

Indirection in Virtual Memory

11

 Each process gets its own private virtual address space

 Solves the previous problems

Physical memory

Virtual memory

Virtual memory

Process 1

Process n

mapping

Autumn 2014 Virtual Memory

University of Washington

Address Spaces

 Virtual address space: Set of N = 2n virtual addresses
 {0, 1, 2, 3, …, N-1}

 Physical address space: Set of M = 2m physical addresses (n >= m)
 {0, 1, 2, 3, …, M-1}

 Every byte in main memory has:
 one physical address

 zero, one, or more virtual addresses

12 Autumn 2014 Virtual Memory

University of Washington

Mapping

P2’s Virtual Address Space

Physical
Memory

Disk

A virtual address can be
mapped to either physical
memory or disk.

13

P1’s Virtual Address Space

Autumn 2014 Virtual Memory

University of Washington

A System Using Physical Addressing

14

 Used in “simple” systems with (usually) just one process:
 embedded microcontrollers in devices like cars, elevators, and digital

picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

4

Autumn 2014 Virtual Memory

University of Washington

A System Using Virtual Addressing

15

 Physical addresses are completely invisible to programs.

 Used in all modern desktops, laptops, servers, smartphones…

 One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

4 4100

Memory Management Unit

Autumn 2014 Virtual Memory

University of Washington

Why Virtual Memory (VM)?

 Efficient use of limited main memory (RAM)
 Use RAM as a cache for the parts of a virtual address space

 some non-cached parts stored on disk

 some (unallocated) non-cached parts stored nowhere

 Keep only active areas of virtual address space in memory

 transfer data back and forth as needed

 Simplifies memory management for programmers
 Each process gets the same full, private linear address space

 Isolates address spaces
 One process can’t interfere with another’s memory

 because they operate in different address spaces

 User process cannot access privileged information

 different sections of address spaces have different permissions

Autumn 2014 16 Virtual Memory

University of Washington

VM and the Memory Hierarchy

 Think of virtual memory as array of N = 2n contiguous bytes.

 Pages of virtual memory are usually stored in physical
memory, but sometimes spill to disk.
 Pages are another unit of aligned memory (size is P = 2p bytes)

 Each virtual page can be stored in any physical page.

17

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0

VP 1

VP 2n-p-1

Virtual memory

Unallocated

Cached

Uncached

Unallocated

Cached

Uncached

PP 0

PP 1

Empty

Cached

0

2n-1

2m-1

0

Virtual pages (VP's)
stored on disk

Physical pages (PP's)
cached in DRAM

Disk

Autumn 2014 Virtual Memory

University of Washington

or: Virtual Memory as DRAM Cache for Disk

 Think of virtual memory as an array of N = 2n contiguous
bytes stored on a disk.

 Then physical main memory is used as a cache for the
virtual memory array
 The cache blocks are called pages (size is P = 2p bytes)

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0

VP 1

VP 2n-p-1

Virtual memory

Unallocated

Cached

Uncached

Unallocated

Cached

Uncached

PP 0

PP 1

Empty

Cached

0

N-1

M-1

0

Virtual pages (VPs)
stored on disk

Physical pages (PPs)
cached in DRAM

18 Autumn 2014 Virtual Memory

University of Washington

Memory Hierarchy: Core 2 Duo

19

Disk

Main
Memory

L2
unified
cache

L1
I-cache

L1
D-cache

CPU Reg

2 B/cycle 8 B/cycle 16 B/cycle 1 B/30 cycles Throughput:

Latency: 100 cycles 14 cycles 3 cycles millions

~4 MB

32 KB

~4 GB ~500 GB

Not drawn to scale

Miss penalty (latency): 33x

Miss penalty (latency): 10,000x

SRAM
Static Random Access Memory

DRAM
Dynamic Random Access Memory

Autumn 2014 Virtual Memory

University of Washington

Virtual Memory Design Consequences

 Large page size: typically 4-8 KB, sometimes up to 4 MB

 Fully associative
 Any virtual page can be placed in any physical page

 Requires a “large” mapping function – different from CPU caches

 Highly sophisticated, expensive replacement algorithms in OS
 Too complicated and open-ended to be implemented in hardware

 Write-back rather than write-through

20 Autumn 2014 Virtual Memory

University of Washington

Address Translation

21

How do we perform the virtual -> physical address
translation?

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

4 4100

Autumn 2014 Virtual Memory

University of Washington

Address Translation: Page Tables

 A page table is an array of page table entries (PTEs) that
maps virtual pages to physical pages.

22

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

How many page tables are in the system?
One per process

stored in physical memory
managed by HW (MMU), OS

Autumn 2014 Virtual Memory

University of Washington

Address Translation With a Page Table

23

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address (VA)

Physical address (PA)

Valid Physical page number (PPN)

Page table
base register

(PTBR)

Page table Page table address
for process

Valid bit = 0:
page not in memory

(page fault)

In most cases, the hardware
(the MMU) can perform this
translation on its own,
without software assistance

This feels familiar…
Autumn 2014 Virtual Memory

University of Washington

Page Hit

 Page hit: reference to VM byte that is in physical memory

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

24 Autumn 2014 Virtual Memory

University of Washington

Page Fault

 Page fault: reference to VM byte that is NOT in physical
memory

25

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

What happens when a page
fault occurs?

Autumn 2014 Virtual Memory

University of Washington

 User writes to memory location

 That portion (page) of user’s memory
is currently on disk

 Page fault handler must load page into physical memory

 Returns to faulting instruction: mov is executed again!

 Successful on second try

int a[1000];

main ()

{

 a[500] = 13;

}

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User Process OS

exception: page fault

Create page and
load into memory returns

movl

26

Fault Example: Page Fault

Autumn 2014 Virtual Memory

University of Washington

Handling Page Fault
 Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

27 Autumn 2014 Virtual Memory

University of Washington

Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

28 Autumn 2014 Virtual Memory

University of Washington

Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

29 Autumn 2014 Virtual Memory

University of Washington

Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

 Offending instruction is restarted: page hit!

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

30 Autumn 2014 Virtual Memory

University of Washington

Why does it work?

31 Autumn 2014 Virtual Memory

University of Washington

Why does VM work on RAM/disk? Locality.

 Virtual memory works well for avoiding disk accesses because
of locality
 Same reason that L1 / L2 / L3 caches work

 The set of virtual pages that a program is “actively” accessing
at any point in time is called its working set

 If (working set size of one process < main memory size):
 Good performance for one process (after compulsory misses)

 But if
SUM(working set sizes of all processes) > main memory size:
 Thrashing: Performance meltdown where pages are swapped (copied)

between memory and disk continuously. CPU always waiting or paging.

32 Autumn 2014 Virtual Memory

University of Washington

VM for Managing Multiple Processes
 Key abstraction: each process has its own virtual address space

 It can view memory as a simple linear array

 With virtual memory, this simple linear virtual address space
need not be contiguous in physical memory
 Process needs to store data in another VP? Just map it to any PP!

34

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1

VP 2
...

0

N-1

VP 1

VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Autumn 2014 Virtual Memory

University of Washington

VM for Protection and Sharing
 The mapping of VPs to PPs provides a simple mechanism to

protect memory and to share memory between processes.
 Sharing: just map virtual pages in separate address spaces to the same

physical page (here: PP 6)

 Protection: process simply can’t access physical pages to which none of
its virtual pages are mapped (here: Process 2 can’t access PP 2).

35

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1

VP 2
...

0

N-1

VP 1

VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Autumn 2014 Virtual Memory

University of Washington

Memory Protection Within a Single
Process
 Can we use virtual memory to control read/write/execute

permissions? How?

36 Autumn 2014 Virtual Memory

University of Washington

Memory Protection Within a Single
Process
 Extend page table entries with permission bits

 MMU checks these permission bits on every memory access
 If violated, raises exception and OS sends SIGSEGV signal to process

(segmentation fault)

37

Process i: Physical Page Num WRITE EXEC

PP 6 No No

PP 4 No Yes

PP 2 Yes

•
•
•

Process j:

No

READ

Yes

No

Yes

WRITE EXEC

PP 9 Yes No

PP 6 No No

PP 11 Yes No

READ

No

Yes

No

VP 0:

VP 1:

VP 2:

VP 0:

VP 1:

VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8

PP 9

PP 11

Yes

Yes

Yes

Yes

Yes

Yes

Valid

Valid Physical Page Num

Autumn 2014 Virtual Memory

University of Washington

Terminology

 context switch
 Switch between processes on the same CPU

 page in
 Move pages of virtual memory from disk to physical memory

 page out
 Move pages of virtual memory from physical memory to disk

 thrash
 Total working set size of processes is larger than physical memory

 Most time is spent paging in and out instead of doing useful computation

38 Autumn 2014 Virtual Memory

University of Washington

Address Translation: Page Hit

39

1) Processor sends virtual address to MMU (memory management unit)

2-3) MMU fetches PTE from page table in cache/memory
(Uses PTBR to find beginning of page table for current process)

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU
Cache/
Memory PA

Data

CPU
VA

CPU Chip
PTEA

PTE
1

2

3

4

5

Autumn 2014 Virtual Memory

VA = Virtual Address PTEA = Page Table Entry Address PTE= Page Table Entry
PA = Physical Address Data = Contents of memory stored at VA originally requested by CPU

University of Washington

Address Translation: Page Fault

40

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in cache/memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7

Autumn 2014 Virtual Memory

University of Washington

Hmm… Translation Sounds Slow!

 The MMU accesses memory twice: once to first get the PTE
for translation, and then again for the actual memory request
from the CPU

 The PTEs may be cached in L1 like any other memory word

 But they may be evicted by other data references

 And a hit in the L1 cache still requires 1-3 cycles

 What can we do to make this faster?

41 Autumn 2014 Virtual Memory

University of Washington

Speeding up Translation with a TLB

 Solution: add another cache!

 Translation Lookaside Buffer (TLB):
 Small hardware cache in MMU

 Maps virtual page numbers to physical page numbers

 Contains complete page table entries for small number of pages

 Modern Intel processors: 128 or 256 entries in TLB

 Much faster than a page table lookup in cache/memory

42 Autumn 2014 Virtual Memory

University of Washington

TLB Hit

43

MMU
Cache/
Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

A TLB hit eliminates a memory access

TLB

VPN 3

Autumn 2014 Virtual Memory

University of Washington

TLB Miss

44

MMU
Cache/
Memory PA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare.

Autumn 2014 Virtual Memory

University of Washington

Simple Memory System Example (small)
 Addressing

 14-bit virtual addresses

 12-bit physical address

 Page size = 64 bytes

45

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPO PPN

VPN

Virtual Page Number Virtual Page Offset

Physical Page Number Physical Page Offset

Autumn 2014 Virtual Memory

University of Washington

Simple Memory System Page Table

 Only showing first 16 entries (out of 256 = 28)

 What about a real address space? Read more in the book…

46

1 0D 0F

1 11 0E

1 2D 0D

0 – 0C

0 – 0B

1 09 0A

1 17 09

1 13 08

Valid PPN VPN

0 – 07

0 – 06

1 16 05

0 – 04

1 02 03

1 33 02

0 – 01

1 28 00

Valid PPN VPN

Autumn 2014 Virtual Memory

University of Washington

Simple Memory System TLB
 16 entries total

 4 sets

 4-way associative

47

13 12 11 10 9 8 7 6 5 4 3 2 1 0

virtual page offset virtual page number

TLB index TLB tag

0 – 02 1 34 0A 1 0D 03 0 – 07 3

0 – 03 0 – 06 0 – 08 0 – 02 2

0 – 0A 0 – 04 0 – 02 1 2D 03 1

1 02 07 0 – 00 1 0D 09 0 – 03 0

Valid PPN Tag Valid PPN Tag Valid PPN Tag Valid PPN Tag Set

TLB ignores page offset. Why?

Autumn 2014 Virtual Memory

University of Washington

Simple Memory System Cache
 16 lines, 4-byte block size

 Physically addressed

 Direct mapped

48

11 10 9 8 7 6 5 4 3 2 1 0

physical page offset physical page number

cache offset cache index cache tag

03 DF C2 11 1 16 7

– – – – 0 31 6

1D F0 72 36 1 0D 5

09 8F 6D 43 1 32 4

– – – – 0 36 3

08 04 02 00 1 1B 2

– – – – 0 15 1

11 23 11 99 1 19 0

B3 B2 B1 B0 Valid Tag Index

– – – – 0 14 F

D3 1B 77 83 1 13 E

15 34 96 04 1 16 D

– – – – 0 12 C

– – – – 0 0B B

3B DA 15 93 1 2D A

– – – – 0 2D 9

89 51 00 3A 1 24 8

B3 B2 B1 B0 Valid Tag Index

Autumn 2014 Virtual Memory

University of Washington

Current state of caches/tables

03 DF C2 11 1 16 7

– – – – 0 31 6

1D F0 72 36 1 0D 5

09 8F 6D 43 1 32 4

– – – – 0 36 3

08 04 02 00 1 1B 2

– – – – 0 15 1

11 23 11 99 1 19 0

B3 B2 B1 B0 Valid Tag Index

– – – – 0 14 F

D3 1B 77 83 1 13 E

15 34 96 04 1 16 D

– – – – 0 12 C

– – – – 0 0B B

3B DA 15 93 1 2D A

– – – – 0 2D 9

89 51 00 3A 1 24 8

B3 B2 B1 B0 Valid Tag Index

Cache

1 0D 0F

1 11 0E

1 2D 0D

0 – 0C

0 – 0B

1 09 0A

1 17 09

1 13 08

Valid PPN VPN

0 – 07

0 – 06

1 16 05

0 – 04

1 02 03

1 33 02

0 – 01

1 28 00

Valid PPN VPN

0 – 02 1 34 0A 1 0D 03 0 – 07 3

0 – 03 0 – 06 0 – 08 0 – 02 2

0 – 0A 0 – 04 0 – 02 1 2D 03 1

1 02 07 0 – 00 1 0D 09 0 – 03 0

Valid PPN Tag Valid PPN Tag Valid PPN Tag Valid PPN Tag Set

TLB

Page table (partial)

50 Autumn 2014 Virtual Memory

University of Washington

Address Translation Example #1

Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

 CO ___ CI___ CT ____ Hit? __ Byte: ____

Autumn 2014 51 Virtual Memory

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO VPN

TLBI TLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPO PPN

CO CI CT

0 0 1 0 1 0 1 1 1 1 0 0 0 0

University of Washington

Address Translation Example #1

Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

 CO ___ CI___ CT ____ Hit? __ Byte: ____

Autumn 2014 52 Virtual Memory

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO VPN

TLBI TLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPO PPN

CO CI CT

0 0 1 0 1 0 1 1 1 1 0 0 0 0

0x0F 3 0x03 Y N 0x0D

0 0 0 1 0 1 0 1 1 0 1 0

0 0x5 0x0D Y 0x36

University of Washington

Address Translation Example #2

Virtual Address: 0x0B8F

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

 CO ___ CI___ CT ____ Hit? __ Byte: ____

Autumn 2014 53 Virtual Memory

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO VPN

TLBI TLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPO PPN

CO CI CT

1 1 1 1 0 0 0 1 1 1 0 1 0 0

University of Washington

Address Translation Example #2

Virtual Address: 0x0B8F

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

 CO ___ CI___ CT ____ Hit? __ Byte: ____

Autumn 2014 54 Virtual Memory

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO VPN

TLBI TLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPO PPN

CO CI CT

1 1 1 1 0 0 0 1 1 1 0 1 0 0

0x2E 2 0x0B N ? TBD

University of Washington

Address Translation Example #3

Virtual Address: 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

 CO___ CI___ CT ____ Hit? __ Byte: ____

Autumn 2014 55 Virtual Memory

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO VPN

TLBI TLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPO PPN

CO CI CT

0 0 0 0 0 1 0 0 0 0 0 0 0 0

University of Washington

Address Translation Example #3

Virtual Address: 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

 CO___ CI___ CT ____ Hit? __ Byte: ____

Autumn 2014 56 Virtual Memory

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO VPN

TLBI TLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPO PPN

CO CI CT

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0x00 0 0x00 N N 0x28

0 0 0 0 0 0 0 0 0 1 1 1

0 0x8 0x28 N Mem

University of Washington

Summary

 Programmer’s view of virtual memory
 Each process has its own private linear address space

 Cannot be corrupted by other processes

 System view of virtual memory
 Uses memory efficiently by caching virtual memory pages

 Efficient only because of locality

 Simplifies memory management and sharing

 Simplifies protection by providing a convenient interpositioning point
to check permissions

58 Autumn 2014 Virtual Memory

University of Washington

Memory System Summary

 L1/L2 Memory Cache
 Purely a speed-up technique

 Behavior invisible to application programmer and (mostly) OS

 Implemented totally in hardware

 Virtual Memory
 Supports many OS-related functions

 Process creation, task switching, protection

 Operating System (software)

 Allocates/shares physical memory among processes

 Maintains high-level tables tracking memory type, source, sharing

 Handles exceptions, fills in hardware-defined mapping tables

 Hardware

 Translates virtual addresses via mapping tables, enforcing permissions

 Accelerates mapping via translation cache (TLB)
59 Autumn 2014 Virtual Memory

University of Washington

Memory System – Who controls what?

 L1/L2 Memory Cache
 Controlled by hardware

 Programmer cannot control it

 Programmer can write code in a way that takes advantage of it

 Virtual Memory
 Controlled by OS and hardware

 Programmer cannot control mapping to physical memory

 Programmer can control sharing and some protection

 via OS functions (not in CSE 351)

60 Autumn 2014 Virtual Memory

