C:
```c
car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);
```

Java:
```java
Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg = c.getMPG();
```

Assembly language:
```
get_mpg:
    pushq   %rbp
    movq    %rsp, %rbp
    ... 
    popq    %rbp
    ret
```

Machine code:
```
0111010000011000
1000110100000100
1000100111000010
110000011111101000011111
```

OS:
```
Windows 8
Mac
```

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C
Integers

- Representation of integers: unsigned and signed
- Casting
- Arithmetic and shifting
- Sign extension
But before we get to integers....

- Encode a standard deck of playing cards.
- 52 cards in 4 suits
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?
Two possible representations

- 52 cards – 52 bits with bit corresponding to card set to 1

 low-order 52 bits of 64-bit word

- “One-hot” encoding
- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required
Two possible representations

- 52 cards – 52 bits with bit corresponding to card set to 1

 low-order 52 bits of 64-bit word

 - “One-hot” encoding
 - Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required

- 4 bits for suit, 13 bits for card value – 17 bits with two set to 1

 - Pair of one-hot encoded values
 - Easier to compare suits and values
 - Still an excessive number of bits

Can we do better?
Two better representations

- Binary encoding of all 52 cards – only 6 bits needed
 - Fits in one byte
 - Smaller than one-hot encodings.
 - How can we make value and suit comparisons easier?

...
Two better representations

- Binary encoding of all 52 cards – only 6 bits needed
 - Fits in one byte
 - Smaller than one-hot encodings.
 - How can we make value and suit comparisons easier?

- Binary encoding of suit (2 bits) and value (4 bits) separately
 - Also fits in one byte, and easy to do comparisons
#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
 return (!(((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK))));
 //return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}

returns int

SUIT_MASK = 0x30 = \(\begin{array}{cccccccc}
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
\end{array} \)

suit value

equivalent

cchar hand[5]; // represents a 5-card hand
char card1, card2; // two cards to compare

card1 = hand[0];
card2 = hand[1];

... if (sameSuitP(card1, card2)) { ... }

mask: a bit vector that, when bitwise ANDed with another bit vector \(v \), turns all but the bits of interest in \(v \) to 0
Compare Card Suits

```c
#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
    return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
    //return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}
```

SUITS_MASK = 0x30 =

```
0 0 1 1 0 0 0 0
```

mask: a bit vector that, when bitwise ANDed with another bit vector v, turns all but the bits of interest in v to 0

```c
char hand[5];
char card1, card2;

card1 = hand[0];

if ( sameSuitP(card1, card2) ) {
    ...
}
```
Compare Card **Values**

```c
#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
    return ((unsigned int)(card1 & VALUE_MASK) >
             (unsigned int)(card2 & VALUE_MASK));
}
```

VALUE_MASK = 0x0F = \(00000111\)

mask: a bit vector that, when bitwise ANDed with another bit vector \(v\), turns all *but* the bits of interest in \(v\) to 0.

```c
char hand[5];       // represents a 5-card hand
char card1, card2;  // two cards to compare

... = hand[1];

if ( greaterValue(card1, card2) ) { ... }```

Autumn 2014
Integers & Floats
#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
    return ((unsigned int)(card1 & VALUE_MASK) > (unsigned int)(card2 & VALUE_MASK));
}

VALUE_MASK = 0x0F = 0 0 0 0 1 1 1 1

  suit       value

char hand[5];
char card1, card2;

card1 = hand[0];
card2 = hand[1];
...

if ( greaterValue(card1, card2) ) { ... }

mask: a bit vector that, when bitwise ANDed with another bit vector \( v \), turns all but the bits of interest in \( v \) to 0
Encoding Integers

- The hardware (and C) supports two flavors of integers:
  - unsigned – only the non-negatives
  - signed – both negatives and non-negatives

- There are only $2^W$ distinct bit patterns of $W$ bits, so...
  - Can not represent all the integers
  - Unsigned values: 0 ... $2^{W-1}$
  - Signed values: $-2^{W-1}$ ... $2^{W-1}-1$

- Reminder: terminology for binary representations

  "Most-significant" or "high-order" bit(s)

  "Least-significant" or "low-order" bit(s)

  0110010110101001
Unsigned Integers

- Unsigned values are just what you expect
  - $b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + b_52^5 + \ldots + b_12^1 + b_02^0$
  - Useful formula: $1+2+4+8+\ldots+2^{N-1} = 2^N - 1$

- Add and subtract using the normal “carry” and “borrow” rules, just in binary.

- How would you make signed integers?
Signed Integers: Sign-and-Magnitude

- Let's do the natural thing for the positives
  - They correspond to the unsigned integers of the same value
    - Example (8 bits): 0x00 = 0, 0x01 = 1, ..., 0x7F = 127

- But, we need to let about half of them be negative
  - Use the high-order bit to indicate negative: call it the “sign bit”
    - Call this a “sign-and-magnitude” representation
  - Examples (8 bits):
    - 0x00 = 00000000₂ is non-negative, because the sign bit is 0
    - 0x7F = 01111111₂ is non-negative
    - 0x85 = 10000101₂ is negative
    - 0x80 = 10000000₂ is negative...
Signed Integers: Sign-and-Magnitude

How should we represent -1 in binary?

- \(10000001_2\)
  Use the MSB for + or -, and the other bits to give magnitude.

Most Significant Bit

10000001_2
Sign-and-Magnitude Negatives

How should we represent -1 in binary?

- \(10000001_2\)
  Use the MSB for + or -, and the other bits to give magnitude.
  (Unfortunate side effect: there are two representations of 0!)
Sign-and-Magnitude Negatives

How should we represent -1 in binary?

- **10000001**
  Use the MSB for + or -, and the other bits to give magnitude.
  (Unfortunate side effect: there are two representations of 0!)

- Another problem: arithmetic is cumbersome.
  - Example: 4 - 3 != 4 + (-3)

```
0100
+1011
1111
```

How do we solve these problems?
Two’s Complement Negatives

How should we represent -1 in binary?
Two’s Complement Negatives

- How should we represent -1 in binary?

Rather than a sign bit, let MSB have same value, but *negative weight.*

\[ b_{w-1} = 1 \text{ adds } -2^{w-1} \text{ to the value.} \]

\[ \text{for } i < w-1: \ b_i = 1 \text{ adds } +2^i \text{ to the value.} \]
Two’s Complement Negatives

How should we represent -1 in binary?

Rather than a sign bit, let MSB have same value, but \textit{negative weight}.

\[
b_{w-1} = 1 \text{ adds } -2^{w-1} \text{ to the value.}
\]

for \( i < w-1 \): \( b_i = 1 \) adds \(+2^i\) to the value.

\[
e.g. \text{ unsigned } 1010\text{ }_2:\quad 1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 10\text{ }_{10}
\]

\[
2\text{’s compl. } 1010\text{ }_2:\quad -1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = -6\text{ }_{10}
\]
Two’s Complement Negatives

- How should we represent -1 in binary?
  
  Rather than a sign bit, let MSB have same value, but **negative weight**.
  
  \[ b_{w-1} = 1 \text{ adds } -2^{w-1} \text{ to the value.} \]
  
  for \( i < w-1 \): \( b_i = 1 \text{ adds } +2^i \text{ to the value.} \)

  e.g. **unsigned** \( 1010_2 \):
  
  \[ 1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 10_{10} \]

  2’s compl. \( 1010_2 \):
  
  \[ -1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = -6_{10} \]

- -1 is represented as \( 1111_2 = -2^3 + (2^3 - 1) \)
  
  All negative integers still have MSB = 1.

- **Advantages**: single zero, simple arithmetic

- **To get negative representation of any integer, take bitwise complement and then add one!**

  \[ \sim x + 1 = -x \]
4-bit Unsigned vs. Two’s Complement

\[
\begin{align*}
2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1 \\
\end{align*}
\]

\[
\begin{align*}
-2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1 \\
\end{align*}
\]
4-bit Unsigned vs. Two's Complement

1 0 1 1

$2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1$

$-2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1$

(math) difference $= 16 = 2^4$
4-bit Unsigned vs. Two’s Complement

1 0 1 1

$2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1$

$-2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1$

(math) difference = 16 = $2^4$
Two’s Complement Arithmetic

- The same addition procedure works for both unsigned and two’s complement integers
  - Simplifies hardware: only one algorithm for addition
  - Algorithm: simple addition, discard the highest carry bit
    - Called “modular” addition: result is sum $modulo \ 2^W$

- Examples:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>+3</td>
<td>+0011</td>
<td>-3</td>
</tr>
<tr>
<td>=7</td>
<td>=0111</td>
<td>=1</td>
</tr>
</tbody>
</table>

drop carry = 0001
Two’s Complement

Why does it work?

- Put another way, for all positive integers x, we want:

\[ \text{Bit representation of } x + \text{Bit representation of } -x = 0 \] (ignoring the carry-out bit)

- This turns out to be the \textit{bitwise complement plus one}

  - What should the 8-bit representation of -1 be?

<table>
<thead>
<tr>
<th>Bit representation of 00000001</th>
<th>Bit representation of ???</th>
<th>Bit representation of 00000000</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000010</td>
<td>00000000</td>
<td>0000000000</td>
</tr>
<tr>
<td>+??????????</td>
<td>+????????????</td>
<td>+???????????</td>
</tr>
<tr>
<td>00000000</td>
<td>00000000</td>
<td>0000000000</td>
</tr>
</tbody>
</table>
Two’s Complement

Why does it work?

- Put another way, for all positive integers x, we want:
  
  \[
  \text{Bit representation of } x + \text{Bit representation of } -x \equiv 0 \quad (\text{ignoring the carry-out bit})
  \]

- This turns out to be the bitwise complement plus one

  - What should the 8-bit representation of -1 be?
    
    \[
    \begin{array}{c}
    \hline
    00000001 \\
    11111111 \\
    \hline
    100000000
    \end{array}
    \]
    
    (we want whichever bit string gives the right result)

    \[
    \begin{array}{c}
    \hline
    00000010 \\
    \hline
    \hline
    00000000
    \end{array}
    \]

    \[
    \begin{array}{c}
    \hline
    00000011 \\
    \hline
    \hline
    00000000
    \end{array}
    \]
Two’s Complement

Why does it work?

- Put another way, for all positive integers \( x \), we want:

  \[
  \text{Bit representation of } x + \text{Bit representation of } -x = 0 \quad \text{(ignoring the carry-out bit)}
  \]

- This turns out to be the \textit{bitwise complement plus one}

  - What should the 8-bit representation of -1 be?

    \[
    \begin{array}{c}
    00000001 \\
    +11111111 \\
    \hline
    100000000
    \end{array}
    \]

    (we want whichever bit string gives the right result)
Signed and unsigned integers have limits.
- If you compute a number that is too big (positive), it wraps:
  \[ 6 + 4 = ? \quad 15U + 2U = ? \]
- If you compute a number that is too small (negative), it wraps:
  \[ -7 - 3 = ? \quad 0U - 2U = ? \]

The CPU may be capable of “throwing an exception” for overflow on signed values.
- It won't for unsigned.

But C and Java just cruise along silently when overflow occurs... Oops.
Conversion Visualized

- Two’s Complement → Unsigned
  - Ordering Inversion
  - Negative → Big Positive

UmMax
UmMax - 1
TMax + 1
TMax

2’s Complement Range

Unsigned Range
Overflow/Wrapping: Unsigned

addition: drop the carry bit

\[
\begin{array}{c}
15 \\
+ 2 \\
\hline
17 \\
\end{array}
\quad
\begin{array}{c}
1111 \\
+ 0010 \\
\hline
10001 \\
\end{array}
\]

Modular Arithmetic
Overflow/Wrapping: Two’s Complement

addition: drop the carry bit

\[
\begin{array}{c}
-1 \\
+ 2 \\
\hline
1
\end{array}
\quad\begin{array}{c}
1111 \\
+ 0010 \\
\hline
10001
\end{array}
\]

\[
\begin{array}{c}
6 \\
+ 3 \\
\hline
9
\end{array}
\quad\begin{array}{c}
0110 \\
+ 0011 \\
\hline
1001
\end{array}
\]

Modular Arithmetic
Values To Remember

- **Unsigned Values**
  - UMin = 0
    - 000...0
  - UMax = $2^w - 1$
    - 111...1

- **Two’s Complement Values**
  - Tmin = $-2^{w-1}$
    - 100...0
  - TMax = $2^{w-1} - 1$
    - 011...1
  - Negative one
    - 111...1 0xF...F

Values for $W = 32$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>4,294,967,296</td>
<td>FF FF FF FF</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>TMax</td>
<td>2,147,483,647</td>
<td>7F FF FF FF</td>
<td>01111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-2,147,483,648</td>
<td>80 00 00 00</td>
<td>10000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF FF FF</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00 00 00</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>
Signed vs. Unsigned in C

- Constants
  - By default are considered to be signed integers
  - Use “U” suffix to force unsigned:
    - 0U, 4294967259U
Signed vs. Unsigned in C

■ Casting
  ▪ int tx, ty;
  ▪ unsigned ux, uy;
  ▪ **Explicit** casting between signed & unsigned:
    ▪ tx = (int) ux;
    ▪ uy = (unsigned) ty;
  ▪ **Implicit** casting also occurs via assignments and function calls:
    ▪ tx = ux;
    ▪ uy = ty;
    ▪ The gcc flag *-Wsign-conversion* produces warnings for implicit casts, but *-Wall* does not!
  ▪ How does casting between signed and unsigned work?
  ▪ What values are going to be produced?
Signed vs. Unsigned in C

- Casting
  - int tx, ty;
  - unsigned ux, uy;
  - Explicit casting between signed & unsigned:
    - tx = (int) ux;
    - uy = (unsigned) ty;
  - Implicit casting also occurs via assignments and function calls:
    - tx = ux;
    - uy = ty;
    - The gcc flag -Wsign-conversion produces warnings for implicit casts, but -Wall does not!
- How does casting between signed and unsigned work?
- What values are going to be produced?
  - **Bits are unchanged**, just interpreted differently!
Casting Surprises

■ Expression Evaluation

- If you mix unsigned and signed in a single expression, then *signed values are implicitly cast to unsigned*.
- Including comparison operations `<`, `>`, `==`, `<=`, `>=`
- Examples for $W = 32$:  
  \[ \text{TMIN} = -2,147,483,648 \quad \text{TMAX} = 2,147,483,647 \]

<table>
<thead>
<tr>
<th>Constant$_1$</th>
<th>Constant$_2$</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>&lt;</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>&gt;</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td>&gt;</td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483648</td>
<td>&lt;</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>&gt;</td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned)-1</td>
<td>-2</td>
<td>&gt;</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td>&lt;</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>&gt;</td>
<td>signed</td>
</tr>
</tbody>
</table>
Casting Surprises

- If you mix unsigned and signed in a single expression, then *signed values are implicitly cast to unsigned* (The bit pattern does not change, bits are just interpreted differently.)
- Examples for $W = 32$

Reminder: $T_{MIN} = -2,147,483,648 \quad T_{MAX} = 2,147,483,647$

<table>
<thead>
<tr>
<th>Constant₁</th>
<th>Constant₂</th>
<th>Relation</th>
<th>Interpret the bits as:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0000 0000 0000 0000 0000 0000 0000 0000</td>
<td>0U 0000 0000 0000 0000 0000 0000 0000 0000</td>
<td>==</td>
<td>Unsigned</td>
</tr>
<tr>
<td>-1 1111 1111 1111 1111 1111 1111 1111 1111</td>
<td>0 0000 0000 0000 0000 0000 0000 0000 0000</td>
<td>&lt;</td>
<td>Signed</td>
</tr>
<tr>
<td>-1 1111 1111 1111 1111 1111 1111 1111 1111</td>
<td>0U 0000 0000 0000 0000 0000 0000 0000 0000</td>
<td>&gt;</td>
<td>Unsigned</td>
</tr>
<tr>
<td>2147483647 0111 1111 1111 1111 1111 1111 1111 1111</td>
<td>-2147483648 1000 0000 0000 0000 0000 0000 0000 0000</td>
<td>&gt;</td>
<td>Signed</td>
</tr>
<tr>
<td>2147483647U 0111 1111 1111 1111 1111 1111 1111 1111</td>
<td>-2147483648 1000 0000 0000 0000 0000 0000 0000 0000</td>
<td>&lt;</td>
<td>Unsigned</td>
</tr>
<tr>
<td>-1 1111 1111 1111 1111 1111 1111 1111 1111</td>
<td>-2 1111 1111 1111 1111 1111 1111 1111 1110</td>
<td>&gt;</td>
<td>Signed</td>
</tr>
<tr>
<td>(unsigned) -1 1111 1111 1111 1111 1111 1111 1111 1111</td>
<td>-2 1111 1111 1111 1111 1111 1111 1111 1110</td>
<td>&gt;</td>
<td>Unsigned</td>
</tr>
<tr>
<td>2147483647 0111 1111 1111 1111 1111 1111 1111 1111</td>
<td>2147483648U 1000 0000 0000 0000 0000 0000 0000 0000</td>
<td>&lt;</td>
<td>Unsigned</td>
</tr>
<tr>
<td>2147483647 0111 1111 1111 1111 1111 1111 1111 1111</td>
<td>(int) 2147483648U 1000 0000 0000 0000 0000 0000 0000 0000</td>
<td>&gt;</td>
<td>Signed</td>
</tr>
</tbody>
</table>
Sign Extension

- What happens if you convert a 32-bit signed integer to a 64-bit signed integer?
Sign Extension

- **Task:**
  - Given $w$-bit signed integer $x$
  - Convert it to $w+k$-bit integer \textit{with same value}

- **Rule:**
  - Make $k$ copies of sign bit:
  - $X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0$

\[
\begin{array}{c}
\text{\hspace{1cm} $k$ copies of MSB} \\
\end{array}
\]
8-bit representations

0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1
0 0 1 0 0 1 1 1

In C: casting between unsigned and signed just reinterprets the same bits.
Sign Extension

- 0010  (4-bit 2)
- 00000010  (8-bit 2)
- 1100  (4-bit -4)
- ???1100  (8-bit -4)
Sign Extension

```
0 0 1 0
```

4-bit 2

```
0 0 0 0 0 0 1 0
```

8-bit 2

```
1 1 0 0
```

4-bit -4

```
0 0 0 0 1 1 0 0
```

8-bit 12

Just adding zeroes to the front does not work
Sign Extension

0 0 1 0
4-bit 2

0 0 0 0 0 0 1 0
8-bit 2

1 1 0 0
4-bit -4

1 0 0 0 1 1 0 0
8-bit -116

Just making the first bit=1 also does not work
Sign Extension

0 0 1 0

4-bit 2

0 0 0 0 0 0 1 0

8-bit 2

1 1 0 0

4-bit -4

1 1 1 1 1 1 0 0

8-bit -4

Need to extend the sign bit to all “new” locations
Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension (Java too)

```c
short int x = 12345;
int ix = (int) x;
short int y = -12345;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>12345</td>
<td>30 39</td>
<td>00110000 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>12345</td>
<td>00 00 30 39</td>
<td>00000000 00000000 00110000 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-12345</td>
<td>CF C7</td>
<td>11001111 11000111</td>
</tr>
<tr>
<td>iy</td>
<td>-12345</td>
<td>FF FF CF C7</td>
<td>11111111 11111111 11001111 11000111</td>
</tr>
</tbody>
</table>
Shift Operations

- **Left shift:** \( x << n \)
  - Shift bit vector \( x \) left by \( n \) positions
    - Throw away extra bits on left
    - Fill with 0s on right

- **Right shift:** \( x >> n \)
  - Shift bit-vector \( x \) right by \( n \) positions
    - Throw away extra bits on right
  - **Logical shift** (for unsigned values)
    - Fill with 0s on left
  - **Arithmetic shift** (for signed values)
    - Replicate most significant bit on left
    - Maintains sign of \( x \)

\[
x >> 9\]

The behavior of >> in C depends on the compiler! It is *arithmetic* shift right in GCC. In Java: >>> is logical shift right; >> is arithmetic shift right.
Shift Operations

- **Left shift:** \( x << n \)
  - Shift bit vector \( x \) left by \( n \) positions
    - Throw away extra bits on left
    - Fill with 0s on right

- **Right shift:** \( x >> n \)
  - Shift bit-vector \( x \) right by \( n \) positions
    - Throw away extra bits on right
  - **Logical shift** (for unsigned values)
    - Fill with 0s on left
  - **Arithmetic shift** (for signed values)
    - Replicate most significant bit on left
    - Maintains sign of \( x \)

<table>
<thead>
<tr>
<th>Argument ( x )</th>
<th>00100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x &lt;&lt; 3 )</td>
<td>00010000</td>
</tr>
<tr>
<td>Logical: ( x &gt;&gt; 2 )</td>
<td>00011000</td>
</tr>
<tr>
<td>Arithmetic: ( x &gt;&gt; 2 )</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument ( x )</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x &lt;&lt; 3 )</td>
<td>00010000</td>
</tr>
<tr>
<td>Logical: ( x &gt;&gt; 2 )</td>
<td>00101000</td>
</tr>
<tr>
<td>Arithmetic: ( x &gt;&gt; 2 )</td>
<td>11101000</td>
</tr>
</tbody>
</table>

\( x >> 9 \)?

The behavior of \( >> \) in C depends on the compiler! It is *arithmetic* shift right in GCC. In Java: \( >>> \) is logical shift right; \( >> \) is arithmetic shift right.
What happens when...

- $x >> n$?
- $x << n$?
What happens when...

- $x >> n$: divide by $2^n$

- $x << n$: multiply by $2^n$

Shifting is faster than general multiple or divide operations
Shifting and Arithmetic Example #1

General Form:

\[ x << n \]
\[ x >> n \]

\[ x = 27; \]
\[ y = x << 2; \]
\[ y = 108 \]

\[ y == 108 \]

logical shift left:
shift in zeros from the right

\[ x = 27; \]
\[ x = 27; \]
\[ y = x << 2; \]
\[ y = x/2^n \]

\[ y == 108 \]

\[ y == 108 \]

logical shift right:
shift in zeros from the left

\[ x = 237; \]
\[ y = x >> 2; \]
\[ y == 59 \]

\[ y == 59 \]
Shifting and Arithmetic Example #2

 signed
 x = -101;
 y = x << 2;
 y == 108

 arithmetic shift right:
 shift in copies of most significant bit from the left

 x/2^n

 logical shift left:
 shift in zeros from the right

 x*2^n

 overflow

 rounding (down)

 signed
 x = -19;
 y = x >> 2;
 y == -5

 Shifts by n < 0 or n >= word size are undefined
Shifting and Arithmetic Example #3

General Form:  
\[ x << n \quad \text{and} \quad x >> n \]

1. \( x = 13; \)
2. \( y = x << 3; \)
3. \( y == 104 \)

**Logical Shift Left:**
- Shift in zeros from the right.
- \( y = x << 3; \)
- \( y == 104 \)

**Logical Shift Right:**
- Shift in zeros from the left.
- \( x/2^n \)

**unsigned**
- \( x = 175; \)
- \( y = x >> 3; \)
- \( y == 21 \)

**Rounding (down):**
Shifting and Arithmetic Example #4

\[ x = 73; \]
\[ y = x \ll 3; \]
\[ y == 72 \]

\[ 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \]

**logical shift left:**
shift in zeros from the right

\[ 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \]

**overflow**

\[ x/2^n \]

**arithmetic shift right:**
shift in copies of most significant bit from the left

\[ 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \]

**rounding (down)**
signed
\[ x = -13; \]
\[ y = x >> 3; \]
\[ y == -2 \]

General Form:
\[ x \ll n \quad x \gg n \]

**General Form:**
\[ x*2^n \]
Using Shifts and Masks

- Extract the 2nd most significant byte of an integer?

<table>
<thead>
<tr>
<th>x</th>
<th>01100001 01100010 01100011 01100100</th>
</tr>
</thead>
</table>

```
Using Shifts and Masks

- Extract the 2nd most significant byte of an integer:
 - First shift, then mask: `(x >> 16) & 0xFF`

<table>
<thead>
<tr>
<th>x</th>
<th>01100001 01100010 01100111 01100110</th>
</tr>
</thead>
<tbody>
<tr>
<td>x >> 16</td>
<td>00000000 00000000 01100011 01100010</td>
</tr>
<tr>
<td>(x >> 16) & 0xFF</td>
<td>00000000 00000000 00000000 11111111</td>
</tr>
<tr>
<td></td>
<td>00000000 00000000 00000000 01100010</td>
</tr>
</tbody>
</table>

- Extract the sign bit of a signed integer?
Using Shifts and Masks

- Extract the sign bit of a signed integer:
 - \((x >> 31) & 1\) - need the “& 1” to clear out all other bits except LSB

<table>
<thead>
<tr>
<th>x</th>
<th>11100001 01100010 01100011 01100100</th>
</tr>
</thead>
<tbody>
<tr>
<td>x >> 31</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
</tbody>
</table>
| (x >> 31) & 0x1 | 00000000 00000000 00000000 00000001 | mask
| | 00000000 00000000 00000000 00000001 | result

<table>
<thead>
<tr>
<th>x</th>
<th>01100001 01100010 01100011 01100100</th>
</tr>
</thead>
<tbody>
<tr>
<td>x >> 31</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>
| (x >> 31) & 0x1 | 00000000 00000000 00000000 00000001 | mask
| | 00000000 00000000 00000000 00000000 | result

This picture is assuming arithmetic shifts, but process works in either case.
Using Shifts and Masks

- **Conditionals as Boolean expressions (assuming x is 0 or 1)**
 - In C: if (x) a=y else a=z; which is the same as \(a = x \ ? \ y : z; \)
 - If x==1 then a=y, otherwise x==0 and a=z
 - Can be re-written (assuming arithmetic right shift) as:
 \[
 a = ((x << 31) >> 31) \& y) \mid ((!x) << 31) >> 31) \& z ;
 \]

<table>
<thead>
<tr>
<th></th>
<th>00000000 00000000 00000000 00000000 00000001</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 1</td>
<td>00000000 00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>x << 31</td>
<td>10000000 00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>((x << 31) >> 31)</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>y = 257</td>
<td>00000000 00000000 00000001 00000000 00000001</td>
</tr>
<tr>
<td>((x << 31) >> 31) & y)</td>
<td>00000000 00000000 00000001 00000000 00000001</td>
</tr>
</tbody>
</table>

If \(x ==1, \) then \(!x = 0 \) and \((!x) << 31 \) >> 31 = 00..0; \) so: \((00..0 \ & \ z) = 0. \) So:
\[
a = (00000000 00000000 00000001 00000001) \mid (00...00) \) (in other words \(a = y \))
\[
If \(x ==0, \) then \(!x = 1 \) and instead \(a = z. \)
One of two sides of the \(| \) will always be all zeroes.
Multiplication

- What do you get when you multiply 9 \times 9?

- What about 2^{30} \times 3?

- 2^{30} \times 5?

- -2^{31} \times -2^{31}?
Unsigned Multiplication in C

Operands: w bits

True Product: $2w$ bits

Discard w bits: w bits

- **Standard Multiplication Function**
 - Ignores high order w bits

- **Implements Modular Arithmetic**

 $$\text{UMult}_w(u \cdot v) = u \cdot v \mod 2^w$$
Power-of-2 Multiply with Shift

- **Operation**
 - \(u << k \) gives \(u \times 2^k \)
 - Both signed and unsigned

 Operands: \(w \) bits

 True Product: \(w+k \) bits

 Discard \(k \) bits: \(w \) bits

- **Examples**
 - \(u << 3 \)
 \[\text{==} \quad u \times 8 \]
 - \(u << 5 - u << 3 \)
 \[\text{==} \quad u \times 24 \]
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically
Code Security Example

```c
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void* user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}
```

```c
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
```
/ * Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void* user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, -MSIZE);
 ...
Floating point topics

- Background: fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

There are many more details that we won’t cover
 - It’s a 58-page standard...
Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some “simple fractions” have no exact representation (e.g., 0.2)
 - Can also lose precision, unlike ints
 - “Every operation gets a slightly wrong result”

- Mathematically equivalent ways of writing an expression may compute different results
 - Violates associativity/distributivity

- Never test floating point values for equality!
- Careful when converting between ints and floats!
Fractional Binary Numbers

- **Representation**
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: \[\sum_{k=-j}^{i} b_k \cdot 2^k \]
Fractional Binary Numbers

- **Value**
 - 5 and 3/4
 - 2 and 7/8
 - 47/64

- **Representation**
 - 101.11_2
 - 10.1111_2
 - 0.1011111_2

- **Observations**
 - Shift left = multiply by power of 2
 - Shift right = divide by power of 2
 - Numbers of the form $0.111111..._2$ are just below 1.0
Limits of Representation

- Limitations:
 - Even given an arbitrary number of bits, can only exactly represent numbers of the form $x \times 2^y$ (y can be negative)
 - Other rational numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/3 = 0.333333..._{10}$</td>
<td>$0.01010101[01]..._2$</td>
</tr>
<tr>
<td>$1/5 = $</td>
<td>$0.001100110011[0011]..._2$</td>
</tr>
<tr>
<td>$1/10 = $</td>
<td>$0.0001100110011[0011]..._2$</td>
</tr>
</tbody>
</table>
Fixed Point Representation

- Implied binary point. Examples:
 #1: the binary point is between bits 2 and 3
 \[b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ [.] \ b_2 \ b_1 \ b_0\]
 #2: the binary point is between bits 4 and 5
 \[b_7 \ b_6 \ b_5 [.] b_4 \ b_3 \ b_2 \ b_1 \ b_0\]

- Same hardware as for integer arithmetic.
 #3: integers! the binary point is after bit 0
 \[b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ b_2 \ b_1 \ b_0 [.]\]

- Fixed point = fixed range and fixed precision
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers
Floating Point

- Analogous to scientific notation

- In Decimal:
 - Not 12000000, but 1.2×10^7
 In C: 1.2e7
 - Not 0.0000012, but 1.2×10^{-6}
 In C: 1.2e-6

- In Binary:
 - Not 11000.000, but 1.1×2^4
 - Not 0.000101, but 1.01×2^{-4}

- We have to divvy up the bits we have (e.g., 32) among:
 - the sign (1 bit)
 - the significand
 - the exponent
IEEE 754
- Established in 1985 as uniform standard for floating point arithmetic
- Main idea: make numerically sensitive programs portable
- Specifies two things: representation and result of floating operations
 - now supported by all major CPUs

Driven by numerical concerns
- Numerical analysts predominated over hardware designers in defining standard
- Nice standards for rounding, overflow, underflow, but...
- But... hard to make fast in hardware
- Float operations can be an order of magnitude slower than integer
Floating Point Representation

- Numerical form:
 \[V_{10} = (-1)^s \times M \times 2^E \]
 - Sign bit \(s \) determines whether number is negative or positive
 - Significand (mantissa) \(M \) normally a fractional value in range \([1.0, 2.0)\)
 - Exponent \(E \) weights value by a (possibly negative) power of two
Floating Point Representation

- **Numerical form:**
 \[V_{10} = (-1)^s \times M \times 2^E \]
 - Sign bit \(s \) determines whether number is negative or positive
 - Significand (mantissa) \(M \) normally a fractional value in range \([1.0, 2.0)\)
 - Exponent \(E \) weights value by a (possibly negative) power of two

- **Representation in memory:**
 - MSB \(s \) is sign bit \(s \)
 - \(\text{exp} \) field encodes \(E \) (but is *not equal* to \(E \))
 - \(\text{frac} \) field encodes \(M \) (but is *not equal* to \(M \))
Precisions

- **Single precision: 32 bits**
 - 1 bit for the sign (s)
 - 8 bits for the exponent (exp)
 - 23 bits for the fraction (frac)

- **Double precision: 64 bits**
 - 1 bit for the sign (s)
 - 11 bits for the exponent (exp)
 - 52 bits for the fraction (frac)

- Finite representation means not all values can be represented exactly. Some will be approximated.
Normalization and Special Values

$v = (-1)^s * M * 2^e$

- "Normalized" = M has the form $1.xxxxx$
 - As in scientific notation, but in binary
 - 0.011×2^5 and 1.1×2^3 represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it

- How do we represent 0.0? Or special / undefined values like 1.0/0.0?
Normalization and Special Values

\[V = (-1)^s \times M \times 2^E \]

- "Normalized" = \(M \) has the form 1.xxxxx
 - As in scientific notation, but in binary
 - 0.011 x \(2^5 \) and 1.1 x \(2^3 \) represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it.

- Special values:
 - zero: \(s = 0 \), \(\exp = 00...0 \), \(\text{frac} = 00...0 \)
 - \(+ \infty , - \infty : \)
 \[\exp = 11...1 \quad \text{frac} = 00...0 \]

\[1.0/0.0 = -1.0/-0.0 = +\infty, \quad 1.0/-0.0 = -1.0/0.0 = -\infty \]

- NaN ("Not a Number"):
 \[\exp = 11...1 \quad \text{frac} \neq 00...0 \]
 Results from operations with undefined result: \(\sqrt{\text{-1}} \), \(\infty - \infty \), \(\infty \times 0 \), etc.

- note: \(\exp=11...1 \) and \(\exp=00...0 \) are reserved, limiting \(\exp \) range...
Normalized Values

\[V = (-1)^s \times M \times 2^E \]

- **Condition:** \(\exp \neq 000...0 \) and \(\exp \neq 111...1 \)
- **Exponent coded as *biased* value:** \(E = \exp - \text{Bias} \)
 - \(\exp \) is an *unsigned* value ranging from 1 to \(2^{k-2} \) (\(k == \) # bits in \(\exp \))
 - \(\text{Bias} = 2^{k-1} - 1 \)
 - Single precision: 127 (so \(\exp \): 1...254, \(E \): -126...127)
 - Double precision: 1023 (so \(\exp \): 1...2046, \(E \): -1022...1023)
 - These enable negative values for \(E \), for representing very small values

- **Significand coded with implied leading 1:** \(M = 1.\,\text{xxx}...\,x_2 \)
 - \(\text{xxx}...x \): the \(n \) bits of \(\text{frac} \)
 - Minimum when \(000...0 \) (\(M = 1.0 \))
 - Maximum when \(111...1 \) (\(M = 2.0 - \varepsilon \))
 - Get extra leading bit for “free”
Normalized Encoding Example

\[V = (-1)^S \times M \times 2^E \]

- **Value:** \(\text{float } f = 12345.0; \)
 - \(12345_{10} = 11000000111001_2 \)
 - \(= 1.1000000111001_2 \times 2^{13} \) (normalized form)

- **Significand:**
 - \(M = 1.1000000111001_2 \)
 - \(\text{frac} = 10000001110010000000000000_2 \)

- **Exponent:** \(E = \text{exp} - \text{Bias} \), so \(\text{exp} = E + \text{Bias} \)
 - \(E = 13 \)
 - \(\text{Bias} = 127 \)
 - \(\text{exp} = 140 = 10001100_2 \)

- **Result:**
 - \(0 \quad 10001100 \quad 100000011100100000000000000 \)
Floating Point Operations: Basic Idea

V = \((-1)^S \times M \times 2^E\)

- \(x +_f y = Round(x + y)\)
- \(x *_f y = Round(x \times y)\)

Basic idea for floating point operations:
- First, compute the exact result
- Then, round the result to make it fit into desired precision:
 - Possibly overflow if exponent too large
 - Possibly drop least-significant bits of significand to fit into \(frac\)
Floating Point Addition

\[(-1)^{s_1} M_1 \ 2^{E_1} + (-1)^{s_2} M_2 \ 2^{E_2} \]

Assume \(E_1 > E_2 \)

- **Exact Result:** \((-1)^s \ M \ 2^E\)
 - Sign \(s \), significand \(M \):
 - Result of signed align & add
 - Exponent \(E \): \(E_1 \)

- **Fixing**
 - If \(M \geq 2 \), shift \(M \) right, increment \(E \)
 - if \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)
 - Overflow if \(E \) out of range
 - Round \(M \) to fit \texttt{frac} precision
Floating Point Multiplication

\((-1)^{s_1} M_1 2^{E_1} \times (-1)^{s_2} M_2 2^{E_2}\)

- **Exact Result:** \((-1)^s M 2^E\)
 - Sign \(s\): \(s_1 \oplus s_2\)
 - Significand \(M\): \(M_1 \times M_2\)
 - Exponent \(E\): \(E_1 + E_2\)

- **Fixing**
 - If \(M \geq 2\), shift \(M\) right, increment \(E\)
 - If \(E\) out of range, overflow
 - Round \(M\) to fit \(\text{frac}\) precision
Rounding modes

Possible rounding modes (illustrate with dollar rounding):

<table>
<thead>
<tr>
<th></th>
<th>$1.40</th>
<th>$1.60</th>
<th>$1.50</th>
<th>$2.50</th>
<th>–$1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round-toward-zero</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>–$1</td>
</tr>
<tr>
<td>Round-down (−∞)</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>–$2</td>
</tr>
<tr>
<td>Round-up (+∞)</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$3</td>
<td>–$1</td>
</tr>
<tr>
<td>Round-to-nearest</td>
<td>$1</td>
<td>$2</td>
<td>??</td>
<td>??</td>
<td>??</td>
</tr>
<tr>
<td>Round-to-even</td>
<td>$1</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>–$2</td>
</tr>
</tbody>
</table>

Round-to-even avoids statistical bias in repeated rounding.

- Rounds up about half the time, down about half the time.
- Default rounding mode for IEEE floating-point
Mathematical Properties of FP Operations

- Exponent overflow yields $+\infty$ or $-\infty$

- Flops with value $+\infty$, $-\infty$, and NaN can be used in operations
 - Result usually still $+\infty$, $-\infty$, or NaN; sometimes intuitive, sometimes not

- Floating point operations are not always associative or distributive, due to rounding!
 - $(3.14 + 1e10) - 1e10 \neq 3.14 + (1e10 - 1e10)$
 - $1e20 * (1e20 - 1e20) \neq (1e20 * 1e20) - (1e20 * 1e20)$
Floating Point in C

- C offers two levels of precision

 - float: single precision (32-bit)
 - double: double precision (64-bit)

- `#include <math.h>` to get INFINITY and NAN constants

- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results
 - Just avoid them!
Floating Point in C

Conversions between data types:

- Casting between `int`, `float`, and `double` changes the bit representation.
- `int` → `float`
 - May be rounded; overflow not possible
- `int` → `double` or `float` → `double`
 - Exact conversion (32-bit ints; 52-bit frac + 1-bit sign)
- `long int` → `double`
 - Rounded or exact, depending on word size
- `double` or `float` → `int`
 - Truncates fractional part (rounded toward zero)
 - E.g. 1.999 -> 1, -1.99 -> -1
 - “Not defined” when out of range or NaN: generally sets to Tmin (even if the value is a very big positive)
Number Representation Really Matters

- **1991: Patriot missile targeting error**
 - clock skew due to conversion from integer to floating point

- **1996: Ariane 5 rocket exploded ($1 billion)**
 - overflow converting 64-bit floating point to 16-bit integer

- **2000: Y2K problem**
 - limited (decimal) representation: overflow, wrap-around

- **2038: Unix epoch rollover**
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to $TMin$ in 2038

- **other related bugs**
 - 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
 - 1997: USS Yorktown “smart” warship stranded: divide by zero
 - 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
Floating Point and the Programmer

#include <stdio.h>

int main(int argc, char* argv[]) {

 float f1 = 1.0;
 float f2 = 0.0;
 int i;
 for (i=0; i<10; i++) {
 f2 += 1.0/10.0;
 }

 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
 printf("f1 = %10.8f\n", f1);
 printf("f2 = %10.8f\n\n", f2);

 f1 = 1E30;
 f2 = 1E-30;
 float f3 = f1 + f2;
 printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");

 return 0;
}

$./a.out
0x3f800000 0x3f800001
f1 = 1.00000000
f2 = 1.000000119
f1 == f3? yes
Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some “simple fractions” have no exact representation (e.g., 0.2)
 - Can also lose precision, unlike ints
 - “Every operation gets a slightly wrong result”

- Mathematically equivalent ways of writing an expression may compute different results
 - Violates associativity/distributivity

- Never test floating point values for equality!
- Careful when converting between ints and floats!
Many more details for the curious...

- Denormalized values – to get finer precision near zero
- Distribution of representable values
- Floating point multiplication & addition algorithms
- Rounding strategies

We won’t be using or testing you on any of these extras in 351.
Denormalized Values

- Condition: \(\text{exp} = 000...0 \)

- Exponent value: \(E = \text{exp} - \text{Bias} + 1 \) (instead of \(E = \text{exp} - \text{Bias} \))

- Significand coded with implied leading 0: \(M = 0 . \text{xxx}...x_2 \)
 - \(\text{xxx}...x \): bits of \(\text{frac} \)

- Cases
 - \(\text{exp} = 000...0, \text{frac} = 000...0 \)
 - Represents value 0
 - Note distinct values: +0 and −0 (why?)
 - \(\text{exp} = 000...0, \text{frac} \neq 000...0 \)
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced
Special Values

- **Condition:** \(\exp = 111...1 \)

- **Case:** \(\exp = 111...1, \frac{\text{frac}}{\text{frac}} = 000...0 \)
 - Represents value \(\infty \) (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., \(1.0/0.0 = -1.0/-0.0 = +\infty, \ 1.0/-0.0 = -1.0/0.0 = -\infty \)

- **Case:** \(\exp = 111...1, \frac{\text{frac}}{\text{frac}} \neq 000...0 \)
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., \(\sqrt{-1}, \infty - \infty, \infty \times 0 \)
Visualization: Floating Point Encodings

-∞ - Normalized

- Denorm

+ Denorm + Normalized +∞

NaN

0 +0

NaN
Tiny Floating Point Example

8-bit Floating Point Representation
- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

Same general form as IEEE Format
- normalized, denormalized
- representation of 0, NaN, infinity
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 0000 000-6 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0000 001-6 1/8*1/64 = 1/512</td>
<td></td>
<td></td>
<td>closest to zero</td>
</tr>
<tr>
<td></td>
<td>0 0000 010-6 2/8*1/64 = 2/512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0000 110-6 6/8*1/64 = 6/512</td>
<td></td>
<td></td>
<td>largest denorm</td>
</tr>
<tr>
<td></td>
<td>0 0000 111-6 7/8*1/64 = 7/512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0001 000-6 8/8*1/64 = 8/512</td>
<td></td>
<td></td>
<td>smallest norm</td>
</tr>
<tr>
<td></td>
<td>0 0001 001 -6 9/8*1/64 = 9/512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0110 110-1 14/8*1/2 = 14/16</td>
<td></td>
<td></td>
<td>closest to 1 below</td>
</tr>
<tr>
<td></td>
<td>0 0110 111-1 15/8*1/2 = 15/16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0111 0000 8/8*1 = 1</td>
<td></td>
<td></td>
<td>closest to 1 above</td>
</tr>
<tr>
<td></td>
<td>0 0111 0010 9/8*1 = 9/8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0111 0100 10/8*1 = 10/8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1110 1107 14/8*128 = 224</td>
<td></td>
<td></td>
<td>largest norm</td>
</tr>
<tr>
<td></td>
<td>0 1110 1117 15/8*128 = 240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1111 000n/a inf</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^3 - 1 = 3$

- Notice how the distribution gets denser toward zero.
Distribution of Values (close-up view)

- **6-bit IEEE-like format**
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - Bias is 3

![Diagram of 6-bit IEEE-like format]

- **Denormalized**
- **Normalized**
- **Infinity**
Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00...00</td>
<td>00...01</td>
<td>$2^{-{23,52}} \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single $\approx 1.4 \times 10^{-45}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double $\approx 4.9 \times 10^{-324}$</td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>00...00</td>
<td>11...11</td>
<td>$(1.0 - \varepsilon) \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single $\approx 1.18 \times 10^{-38}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double $\approx 2.2 \times 10^{-308}$</td>
</tr>
<tr>
<td>Smallest Pos. Norm.</td>
<td>00...01</td>
<td>00...00</td>
<td>$1.0 \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Just larger than largest denormalized</td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
<td>00...00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...10</td>
<td>11...11</td>
<td>$(2.0 - \varepsilon) \times 2^{127,1023}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Single $\approx 3.4 \times 10^{38}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Double $\approx 1.8 \times 10^{308}$</td>
</tr>
</tbody>
</table>
Special Properties of Encoding

- **Floating point zero (0^+) exactly the same bits as integer zero**
 - All bits = 0

- **Can (Almost) Use Unsigned Integer Comparison**
 - Must first compare sign bits
 - Must consider $0^- = 0^+ = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity
Floating Point Multiplication

\[(-1)^{s_1} M_1 \ 2^{E_1} \ * \ (-1)^{s_2} M_2 \ 2^{E_2} \]

- Exact Result: \((-1)^s M \ 2^E\)
 - Sign \(s\): \(s_1 ^ s_2\) // xor of \(s_1\) and \(s_2\)
 - Significand \(M\): \(M_1 \ * \ M_2\)
 - Exponent \(E\): \(E_1 + E_2\)

- Fixing
 - If \(M \geq 2\), shift \(M\) right, increment \(E\)
 - If \(E\) out of range, overflow
 - Round \(M\) to fit frac precision
Floating Point Addition

\[(-1)^{s_1} M_1 \ 2^{E_1} + (-1)^{s_2} M_2 \ 2^{E_2} \]

Assume \(E_1 > E_2 \)

- **Exact Result**: \((-1)^s M \ 2^E\)
 - Sign \(s \), significand \(M \):
 - Result of signed align & add
 - Exponent \(E \): \(E_1 \)

- **Fixing**
 - If \(M \geq 2 \), shift \(M \) right, increment \(E \)
 - if \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)
 - Overflow if \(E \) out of range
 - Round \(M \) to fit frac precision
Closer Look at Round-To-Even

- Default Rounding Mode
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under-estimated

- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth
 - 1.2349999 1.23 (Less than half way)
 - 1.2350001 1.24 (Greater than half way)
 - 1.2350000 1.24 (Half way—round up)
 - 1.2450000 1.24 (Half way—round down)
Rounding Binary Numbers

- Binary Fractional Numbers
 - “Half way” when bits to right of rounding position = 100...2

- Examples
 - Round to nearest 1/4 (2 bits right of binary point)

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Rounded</th>
<th>Action</th>
<th>Rounded Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/32</td>
<td>10.00011₂</td>
<td>10.00₂</td>
<td>(<1/2—down)</td>
<td>2</td>
</tr>
<tr>
<td>2 3/16</td>
<td>10.00110₂</td>
<td>10.01₂</td>
<td>(>1/2—up)</td>
<td>2 1/4</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.11100₂</td>
<td>11.00₂</td>
<td>(1/2—up)</td>
<td>3</td>
</tr>
<tr>
<td>2 5/8</td>
<td>10.10100₂</td>
<td>10.10₂</td>
<td>(1/2—down)</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>