
University of Washington

Announcements

 On the website: cs.uw.edu/351
 Anonymous feedback form

 Lecture slides on the web schedule (these will be linked 1-2 days prior)

 Lab 0, make sure to start early

 Discussion boards

 Videos for optional reference – not exactly the same slides as we’ll use

 Tips for C, debugging, etc.

 Lecture content

 Office hours: Almost finalized, check the calendar

 Anyone not yet enrolled, who did not sign sheet on Wed? If
so, see me right after class.

 Autumn 2014 1 Memory & data

University of Washington

Hardware: Logical View

2

CPU Memory

Disks Net USB Etc.

Bus

Autumn 2014 Memory & data

University of Washington

Hardware: Semi-Logical View

3

G
ra

p
h

ic
s M

e
m

o
ry

I/O

CPU

Sto
rage

A

u
d

io

N
e

tw
o

rk

U
SB

…

(Bus)

Autumn 2014 Memory & data

University of Washington

Hardware: Physical View

4

CPU

USB…

I/O
controller

Storage connections

Memory

Autumn 2014 Memory & data

University of Washington

Hardware: 351 View (version 0)

 CPU executes instructions; memory stores data

 To execute an instruction, the CPU must:
 fetch an instruction;

 fetch the data used by the instruction; and, finally,

 execute the instruction on the data…

 which may result in writing data back to memory.

5

Memory

CPU

?
data

instructions

Autumn 2014 Memory & data

University of Washington

Hardware: 351 View (version 1)

 The CPU holds instructions temporarily in the instruction cache

 The CPU holds data temporarily in a fixed number of registers

 Instruction and operand fetching is HW-controlled

 Data movement is programmer-controlled

 We’ll learn about the instructions the CPU executes –
take 352 to find out how it actually executes them

6

Memory

data

instructions

CPU

take 352…

registers

i-cache

this week…

Autumn 2014 Memory & data

University of Washington

Hardware: 351 View (version 1)

 The CPU holds instructions temporarily in the instruction cache.

 The CPU holds data temporarily in a fixed number of registers.

 Instruction fetching is HW-controlled.

 Data movement is programmer-controlled.

7

Memory

data

instructions

CPU

take 352…

registers

i-cache

this week…

How are data
and instructions
represented?

How does a
program find its
data in memory?

Autumn 2014 Memory & data

University of Washington

Roadmap

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

 c.getMPG();

get_mpg:

 pushq %rbp

 movq %rsp, %rbp

 ...

 popq %rbp

 ret

Java: C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

8 Autumn 2014 Memory & data

University of Washington

Memory, Data, and Addressing

 Representing information as bits and bytes

 Organizing and addressing data in memory

 Manipulating data in memory using C

 Boolean algebra and bit-level manipulations

9 Autumn 2014 Memory & data

University of Washington

10

Memory

data

instructions

CPU

take 352…

registers

i-cache

this week…

How are data
and instructions
represented?

Autumn 2014 Memory & data

University of Washington

Binary Representations

 Base 2 number representation
 A base 2 digit (0 or 1) is called a bit.

 Represent 35110 as 00000001010111112 or 1010111112

 Electronic implementation
 Easy to store with bi-stable elements

 Reliably transmitted on noisy and inaccurate wires

0.0V

0.5V

2.8V

3.3V

0 1 0

11 Autumn 2014 Memory & data

University of Washington

Describing Byte Values

 Binary 000000002 -- 111111112

 Byte = 8 bits (binary digits)

 Decimal 010 -- 25510

 Hexadecimal 0016 -- FF16

 Byte = 2 hexadecimal (or “hex” or base 16) digits

 Base 16 number representation

 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

 Write FA1D37B16 in the C language

 as 0xFA1D37B or 0xfa1d37b

 More on specific data types later…

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

12 Autumn 2014 Memory & data

University of Washington

13

Memory

data

instructions

CPU

take 352…

registers

i-cache

this week…

How does a
program find its
data in memory?

Autumn 2014 Memory & data

University of Washington

Byte-Oriented Memory Organization

 Conceptually, memory is a single, large array of bytes,
each with an unique address (index)

 The value of each byte in memory can be read and written

 Programs refer to bytes in memory by their addresses
 Domain of possible addresses = address space

 But not all values (e.g., 351) fit in a single byte…
 Store addresses to “remember” where other data is in memory

 How much memory can we address with 1-byte (8-bit) addresses?

 Many operations actually use multi-byte values

• • •

14 Autumn 2014 Memory & data

University of Washington

Machine Words

 Word size = address size = register size

 Word size bounds the size of the address space and memory
 word size = w bits => 2w addresses

 Until recently, most machines used 32-bit (4-byte) words

 Potential address space: 232 addresses
232 bytes 4 x 109 bytes = 4 billion bytes = 4GB

 Became too small for memory-intensive applications

 Current x86 systems use 64-bit (8-byte) words

 Potential address space: 264 addresses
264 bytes 1.8 x 1019 bytes = 18 billion billion bytes = 18 EB (exabytes)

15 Autumn 2014 Memory & data

University of Washington

Word-Oriented Memory Organization

 Addresses specify
locations of bytes in memory
 Address of word

 = address of first byte in word

 Addresses of successive words
differ by word size (in bytes):
e.g., 4 (32-bit) or 8 (64-bit)

 Address of word 0, 1, .. 10?

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words

Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

16 Autumn 2014 Memory & data

(note: decimal
addresses)

University of Washington

Word-Oriented Memory Organization

 Addresses still specify
locations of bytes in memory
 Address of word

 = address of first byte in word

 Addresses of successive words
differ by word size (in bytes):
e.g., 4 (32-bit) or 8 (64-bit)

 Address of word 0, 1, .. 10?

 Alignment

0000
0001
0002
0003

0005
0006
0007
0008
0009
0010
0011

32-bit
Words

Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

17

0004

Autumn 2014 Memory & data

(note: decimal
addresses)

University of Washington

Memory Alignment

 Data of size n only stored at addresses a where a mod n = 0
 Convention or rule, depending on platform

 n is usually a power of 2

 A 32-bit (4-byte) word-aligned
view of memory:
 Each row is a word

composed of 4 bytes

 Cells in a row are
the word’s bytes

18

More about alignment later in the course

0x00 0x01 0x02 0x03

0x04 0x05 0x06 0x07

…

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

(note hex
addresses)

Autumn 2014 Memory & data

University of Washington

Addresses and Pointers

 An address is a location in memory

 A pointer is a data object that holds an address

 The value 351 is stored at address 0x04
 35110 = 15F16 = 0x00 00 01 5F

5F 01 00 00

19

0x00

0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

0x04

Autumn 2014 Memory & data

University of Washington

Addresses and Pointers

 An address is a location in memory

 A pointer is a data object that holds an address

 The value 351 is stored at address 0x04
 35110 = 15F16 = 0x00 00 01 5F

 A pointer stored at address 0x1C
points to address 0x04

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

04 00 00 00

5F 01 00 00

20 Autumn 2014 Memory & data

University of Washington

Addresses and Pointers

 An address is a location in memory

 A pointer is a data object that holds an address

 The value 351 is stored at address 0x04
 35110 = 15F16 = 0x00 00 01 5F

 A pointer stored at address 0x1C
points to address 0x04

 A pointer to a pointer
is stored at address 0x24

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

04 00 00 00

1C 00 00 00

5F 01 00 00

21 Autumn 2014 Memory & data

University of Washington

Addresses and Pointers

 An address is a location in memory

 A pointer is a data object that holds an address.

 The value 351 is stored at address 0x04
 35110 = 15F16 = 0x00 00 01 5F

 A pointer stored at address 0x1C
points to address 0x04

 A pointer to a pointer
is stored at address 0x24

 The value 12 is stored
at address 0x14
 Is it a pointer?

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

04 00 00 00

1C 00 00 00

5F 01 00 00

0C 00 00 00

22 Autumn 2014 Memory & data

University of Washington

Sizes of data types (in bytes)
Java Data Type C Data Type Typical 32-bit x86-64

boolean bool 1 1

byte char 1 1

char 2 2

short short int 2 2

int int 4 4

float float 4 4

 long int 4 8

double double 8 8

long long long 8 8

 long double 8 16

(reference) pointer * 4 8

Data Representations

23 Autumn 2014 Memory & data

University of Washington

Byte Ordering

 How should bytes within a word be ordered in memory?

 Example: Store the 4-byte word 0xa1 b2 c3 d4
 In what order will the bytes be stored?

 Conventions!
 Big-endian, Little-endian

 Based on Gulliver’s Travels: tribes cut eggs on different sides (big, little)

24 Autumn 2014 Memory & data

University of Washington

Byte Ordering

 Big-Endian (PowerPC, SPARC, The Internet)
 Least significant byte has highest address

 Little-Endian (x86)
 Least significant byte has lowest address

 Example
 Variable has 4-byte representation 0xa1b2c3d4

 Address of variable is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

a1 b2 c3 d4

d4 c3 b2 a1

25 Autumn 2014 Memory & data

University of Washington

Byte Ordering Examples
Decimal: 12345

Binary: 0011 0000 0011 1001

Hex: 3 0 3 9

39
30
00
00

IA32, x86-64
(little endian)

00
00
00
00

39
30
00
00

x86-64

39
30
00
00

IA32

26

30
39

00
00

SPARC
(big endian)

30
39

00
00

32-bit
SPARC

30
39

00
00

64-bit
SPARC

00
00
00
00

Autumn 2014 Memory & data

int x = 12345;

// or x = 0x3039;

long int y = 12345;

// or y = 0x3039;

(A long int is the size
of a word)

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

University of Washington

Reading Byte-Reversed Listings

 Disassembly
 Take binary machine code and generate an assembly code version

 Does the reverse of the assembler

 Example instruction in memory
 add value 0x12ab to register ‘ebx’ (a special location in CPU’s memory)

 Address Instruction Code Assembly Rendition

8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx

27 Autumn 2014 Memory & data

University of Washington

Reading Byte-Reversed Listings

 Disassembly
 Take binary machine code and generate an assembly code version

 Does the reverse of the assembler

 Example instruction in memory
 add value 0x12ab to register ‘ebx’ (a special location in CPU’s memory)

 Address Instruction Code Assembly Rendition

8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx

Deciphering numbers

 Value: 0x12ab

 Pad to 32 bits: 0x000012ab

 Split into bytes: 00 00 12 ab

 Reverse (little-endian): ab 12 00 00
28 Autumn 2014 Memory & data

University of Washington

Addresses and Pointers in C

29

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

int* ptr;

int x = 5;

int y = 2;

ptr = &x;

y = 1 + *ptr;

Declares a variable, ptr, that is a pointer
to (i.e., holds the address of) an int in
memory

Declares two variables, x and y, that hold
ints, and sets them to 5 and 2, respectively

Sets ptr to the address of
x.
Now, “ptr points to x”

Sets y to “1 plus the value stored at the address held by ptr,
because ptr points to x, this is equivalent to y=1+x;

“Dereference ptr”

What is *(&y) ?

Autumn 2014 Memory & data

University of Washington

Assignment in C

 A variable is represented by a memory location

 Initially, it may hold any value

 int x, y;
 x is at location 0x04, y is at 0x18

30

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

F3 29 01 00

00 00 00 01

x

y

00 32 00 A7

EE EE EE EE
FE CA CE FA
00 00 00 26
00 10 00 00

96 F4 00 FF
00 00 00 00
34 17 42 00

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

* is also used with

variable declarations

University of Washington

Assignment in C

 A variable is represented by a memory location

 Initially, it may hold any value

 int x, y;
 x is at location 0x04, y is at 0x18

31

x

y

F3 29 01 00

00 00 00 01

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

University of Washington

Assignment in C

 Left-hand-side = right-hand-side;
 LHS must evaluate to a memory location

 RHS must evaluate to a value (could be an address!)

 Store RHS value at LHS location

 int x, y;

 x = 0;

32

00 00 00 00

00 00 00 01

x

y

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

University of Washington

Assignment in C

 Left-hand-side = right-hand-side;
 LHS must evaluate to a memory location

 RHS must evaluate to a value (could be an address!)

 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

33

00 00 00 00

3C D0 27 00

x

y

little endian!

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

University of Washington

Assignment in C

 Left-hand-side = right-hand-side;
 LHS must evaluate to a memory location

 RHS must evaluate to a value (could be an address!)

 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;
 Get value at y, add 3, put it in x

34

3C D0 27 03

3C D0 27 00

x

y

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

University of Washington

Assignment in C

 Left-hand-side = right-hand-side;
 LHS must evaluate to a memory location

 RHS must evaluate to a value (could be an address!)

 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;
 Get value at y, add 3, put it in x

 int* z

35

3C D0 27 03

3C D0 27 00

x

y

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

University of Washington

Assignment in C

 Left-hand-side = right-hand-side;
 LHS must evaluate to a memory location

 RHS must evaluate to a value (could be an address!)

 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;
 Get value at y, add 3, put it in x

 int* z = &y + 3;
 Get address of y, add ???, put it in z

36

3C D0 27 03

3C D0 27 00

x

y

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

University of Washington

Assignment in C

 Left-hand-side = right-hand-side;
 LHS must evaluate to a memory location

 RHS must evaluate to a value (could be an address!)

 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;
 Get value at y, add 3, put it in x

 int* z = &y + 3;
 Get address of y, add 12, put it in z

37

3C D0 27 03

3C D0 27 00

x

y

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z 00 00 00 24

Pointer arithmetic is scaled by size of target type

Pointer arithmetic
can be dangerous

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

0x18 = 24 (decimal)

 + 12

 36 = 0x24

University of Washington

Assignment in C

 Left-hand-side = right-hand-side;
 LHS must evaluate to a memory location

 RHS must evaluate to a value (could be an address!)

 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;
 Get value at y, add 3, put it in x

 int* z = &y + 3;
 Get address of y, add 12, put it in z

 *z = y;
 What does this do?

38

3C D0 27 03

3C D0 27 00

x

y

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z 00 00 00 24

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

University of Washington

Assignment in C

 Left-hand-side = right-hand-side;
 LHS must evaluate to a memory location

 RHS must evaluate to a value (could be an address!)

 Store RHS value at LHS location

 int x, y;

 x = 0;

 y = 0x3CD02700;

 x = y + 3;
 Get value at y, add 3, put it in x

 int* z = &y + 3;
 Get address of y, add 12, put it in z

 *z = y;
 Get value of y, put it at the address stored in z

 39

3C D0 27 03

3C D0 27 00

x

y

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

z 00 00 00 24
3C D0 27 00

The target of a pointer is
also a memory location

& = ‘address of’
* = ‘value at address’
 or ‘dereference’

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

University of Washington

Arrays in C

40

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

Declaration: int a[6]; a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

element type

name
number of
elements

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

University of Washington

Arrays in C

41

00 00 01 5F

00 00 01 5F

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

Declaration:

a[0]
a[1]

a[5]

…

a[0] = 0x015f;
a[5] = a[0];

Indexing:

int a[6];

The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

University of Washington

Arrays in C

42

00 00 01 5F

00 00 01 5F

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

Declaration:

a[0]
a[1]

a[5]

…

a[0] = 0x015f;
a[5] = a[0];

Indexing:

a[6] = 0xBAD;
a[-1] = 0xBAD;

No bounds
check:

00 00 0B AD

00 00 0B AD

int a[6];

The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

University of Washington

Arrays in C

43

00 00 01 5F

00 00 01 5F

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

00 00 00 04

Declaration:

p

a[0]
a[1]

a[5]

…

a[0] = 0x015f;
a[5] = a[0];

Indexing:

Pointers:

{ equivalent

a[6] = 0xBAD;
a[-1] = 0xBAD;

No bounds
check:

00 00 0B AD

00 00 0B AD int* p;
p = a;
p = &a[0];

int a[6];

The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

University of Washington

Arrays in C

44

00 00 01 5F

00 00 01 5F

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

00 00 00 04

Declaration:

p

a[0]
a[1]

a[5]

…

a[0] = 0x015f;
a[5] = a[0];

Indexing:

Pointers:

{ equivalent

a[6] = 0xBAD;
a[-1] = 0xBAD;

No bounds
check:

00 00 0B AD

00 00 0B AD int* p;
p = a;
p = &a[0];
*p = 0xA;

int a[6];

The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

University of Washington

Arrays in C

45

00 00 00 0A

00 00 01 5F

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

00 00 00 04

Declaration:

p

a[0]
a[1]

a[5]

…

a[0] = 0x015f;
a[5] = a[0];

Indexing:

Pointers:

{ equivalent

a[6] = 0xBAD;
a[-1] = 0xBAD;

No bounds
check:

00 00 0B AD

00 00 0B AD int* p;
p = a;
p = &a[0];
*p = 0xA;

int a[6];

The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

University of Washington

Arrays in C

46

00 00 00 0A

00 00 01 5F

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

00 00 00 04

Declaration:

p

a[0]
a[1]

a[5]

…

a[0] = 0x015f;
a[5] = a[0];

Indexing:

Pointers:

{ equivalent

a[6] = 0xBAD;
a[-1] = 0xBAD;

No bounds
check:

00 00 0B AD

00 00 0B AD

00 00 00 0B

int* p;
p = a;
p = &a[0];
*p = 0xA;

p[1] = 0xB;

int a[6];

The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

University of Washington

array indexing = address arithmetic
Both are scaled by the size of the type

Arrays in C

47

00 00 00 0A

00 00 01 5F

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

00 00 00 04

Declaration:

p

a[0]
a[1]

a[5]

…

a[0] = 0x015f;
a[5] = a[0];

Indexing:

Pointers:

{ equivalent

a[6] = 0xBAD;
a[-1] = 0xBAD;

No bounds
check:

00 00 0B AD

00 00 0B AD

00 00 00 0B

int* p;
p = a;
p = &a[0];
*p = 0xA;

p[1] = 0xB;

int a[6];

The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

University of Washington

array indexing = address arithmetic
Both are scaled by the size of the type

Arrays in C

48

00 00 00 0A

00 00 01 5F

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

00 00 00 04

Declaration:

p

a[0]
a[1]

a[5]

…

a[0] = 0x015f;
a[5] = a[0];

Indexing:

Pointers:

{ equivalent

a[6] = 0xBAD;
a[-1] = 0xBAD;

No bounds
check:

00 00 0B AD

00 00 0B AD

00 00 00 0B

int* p;
p = a;
p = &a[0];
*p = 0xA;

{ equivalent
p[1] = 0xB;
*(p + 1) = 0xB;

int a[6];

The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

University of Washington

array indexing = address arithmetic
Both are scaled by the size of the type

Arrays in C

49

00 00 00 0A

00 00 01 5F

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

00 00 00 04

Declaration:

p

a[0]
a[1]

a[5]

…

a[0] = 0x015f;
a[5] = a[0];

Indexing:

Pointers:

{ equivalent

a[6] = 0xBAD;
a[-1] = 0xBAD;

No bounds
check:

00 00 0B AD

00 00 0B AD

00 00 00 0B

int* p;
p = a;
p = &a[0];
*p = 0xA;

{ equivalent
p[1] = 0xB;
*(p + 1) = 0xB;
p = p + 2;

int a[6];

The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

University of Washington

array indexing = address arithmetic
Both are scaled by the size of the type

Arrays in C

50

00 00 00 0A

00 00 01 5F

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

00 00 00 0C

Declaration:

p

a[0]
a[1]

a[5]

…

a[0] = 0x015f;
a[5] = a[0];

Indexing:

Pointers:

{ equivalent

a[6] = 0xBAD;
a[-1] = 0xBAD;

No bounds
check:

00 00 0B AD

00 00 0B AD

00 00 00 0B

int* p;
p = a;
p = &a[0];
*p = 0xA;

{ equivalent
p[1] = 0xB;
*(p + 1) = 0xB;
p = p + 2;

int a[6];

The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

University of Washington

array indexing = address arithmetic
Both are scaled by the size of the type

Arrays in C

51

00 00 00 0A

00 00 01 5F

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

00 00 00 0C

Declaration:

p

a[0]
a[1]

a[5]

…

a[0] = 0x015f;
a[5] = a[0];

Indexing:

Pointers:

{ equivalent

a[6] = 0xBAD;
a[-1] = 0xBAD;

No bounds
check:

00 00 0B AD

00 00 0B AD

00 00 00 0B

int* p;
p = a;
p = &a[0];
*p = 0xA;

{ equivalent
p[1] = 0xB;
*(p + 1) = 0xB;
p = p + 2;

int a[6];

*p = a[1] + 1;

00 00 00 0C

The address of a[i] is the address of a[0]
plus i times the element size in bytes

a is a name for the array’s address

Arrays are adjacent locations in memory
storing the same type of data object

Autumn 2014 Memory & data

0x00 0x01 0x02 0x03

University of Washington

Representing strings
 A C-style string is represented by an array of bytes (char)

— Elements are one-byte ASCII codes for each character

— ASCII = American Standard Code for Information Interchange
32 space 48 0 64 @ 80 P 96 ` 112 p

33 ! 49 1 65 A 81 Q 97 a 113 q

34 ” 50 2 66 B 82 R 98 b 114 r

35 # 51 3 67 C 83 S 99 c 115 s

36 $ 52 4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e 117 u

38 & 54 6 70 F 86 V 102 f 118 v

39 ’ 55 7 71 G 87 W 103 g 119 w

40 (56 8 72 H 88 X 104 h 120 x

41) 57 9 73 I 89 Y 105 I 121 y

42 * 58 : 74 J 90 Z 106 j 122 z

43 + 59 ; 75 K 91 [107 k 123 {

44 , 60 < 76 L 92 \ 108 l 124 |

45 - 61 = 77 M 93] 109 m 125 }

46 . 62 > 78 N 94 ^ 110 n 126 ~

47 / 63 ? 79 O 95 _ 111 o 127 del

52 Autumn 2014 Memory & data

University of Washington

Null-terminated Strings

72 97 114 114 121 32 80 111 116 116 101 114 0

H a r r y P o t t e r \0

53

 For example, “Harry Potter” can be stored as a 13-byte array

 Why do we put a 0, or null zero, at the end of the string?
 Note the special symbol: string[12] = '\0';

 How do we compute the string length?

Autumn 2014 Memory & data

University of Washington

char s[6] = "12345";

Endianness and Strings

 Byte ordering (endianness) is not an issue for 1-byte values
 The whole array does not constitute a single value

 Individual elements are values; chars are single bytes

 Unicode characters – up to 4 bytes/character
 ASCII codes still work (just add leading zeros)

 Unicode can support the many characters in all languages in the world

 Java and C have libraries for Unicode (Java commonly uses 2 bytes/char)

33
34

31
32

35
00

33
34

31
32

35
00

54

C (char = 1 byte)

Autumn 2014 Memory & data

0x00

0x01

0x02

0x03

0x04

0x05

0x00

0x01

0x02

0x03

0x04

0x05 Note: 0x31 = 49 decimal = ASCII ‘1’

‘1’

‘2’

‘3’

‘4’

‘5’

‘\0’

IA32, x86-64
(little endian)

SPARC
(big endian)

University of Washington

 Code to print byte representation of data
 Any data type can be treated as a byte array by casting it to char

 C has unchecked casts. << DANGER >>

Examining Data Representations

void show_bytes(char* start, int len) {

 int i;

 for (i = 0; i < len; i++)

 printf("%p\t0x%.2x\n", start+i, *(start+i));

 printf("\n");

}

printf directives:
 %p Print pointer
 \t Tab
 %x Print value as hex
 \n New line

55

void show_int (int x) {

 show_bytes((char *) &x, sizeof(int));

}

Autumn 2014 Memory & data

University of Washington

show_bytes Execution Example

int a = 12345; // represented as 0x00003039

printf("int a = 12345;\n");

show_int(a); // show_bytes((char *) &a, sizeof(int));

Result:

int a = 12345;

0x11ffffcb8 0x39

0x11ffffcb9 0x30

0x11ffffcba 0x00

0x11ffffcbb 0x00

56 Autumn 2014 Memory & data

University of Washington

Boolean Algebra

 Developed by George Boole in 19th Century

 Algebraic representation of logic

 Encode “True” as 1 and “False” as 0

 AND: A&B = 1 when both A is 1 and B is 1

 OR: A|B = 1 when either A is 1 or B is 1

 XOR: A^B = 1 when either A is 1 or B is 1, but not both

 NOT: ~A = 1 when A is 0 and vice-versa

 DeMorgan’s Law: ~(A | B) = ~A & ~B
 ~(A & B) = ~A | ~B

& 0 1

0 0 0

1 0 1

~

0 1

1 0

57 Autumn 2014 Memory & data

University of Washington

Boolean Algebra

 Developed by George Boole in 19th Century

 Algebraic representation of logic

 Encode “True” as 1 and “False” as 0

 AND: A&B = 1 when both A is 1 and B is 1

 OR: A|B = 1 when either A is 1 or B is 1

 XOR: A^B = 1 when either A is 1 or B is 1, but not both

 NOT: ~A = 1 when A is 0 and vice-versa

 DeMorgan’s Law: ~(A | B) = ~A & ~B
 ~(A & B) = ~A | ~B

& 0 1

0 0 0

1 0 1

~

0 1

1 0

| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0

58 Autumn 2014 Memory & data

University of Washington

General Boolean Algebras

 Operate on bit vectors
 Operations applied bitwise

 All of the properties of Boolean algebra apply

 How does this relate to set operations?

 01101001
& 01010101

 01000001

 01101001
| 01010101
 01111101

 01101001
^ 01010101
 00111100

~ 01010101
 10101010

 01010101
^ 01010101
 00000000

59 Autumn 2014 Memory & data

University of Washington

Representing & Manipulating Sets

 Representation
 A w-bit vector represents subsets of {0, …, w–1}

 aj = 1 iff j A

01101001 { 0, 3, 5, 6 }

76543210

01010101 { 0, 2, 4, 6 }

76543210

 Operations
 & Intersection 01000001 { 0, 6 }

 | Union 01111101 { 0, 2, 3, 4, 5, 6 }

 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

 ~ Complement 10101010 { 1, 3, 5, 7 }

60 Autumn 2014 Memory & data

University of Washington

Bit-Level Operations in C

 & | ^ ~
 Apply to any “integral” data type

 long, int, short, char, unsigned

 View arguments as bit vectors

 Examples (char data type)
 ~0x41 --> 0xBE

~010000012 --> 101111102

 ~0x00 --> 0xFF

~000000002 --> 111111112

 0x69 & 0x55 --> 0x41

011010012 & 010101012 --> 010000012

 0x69 | 0x55 --> 0x7D

011010012 | 010101012 --> 011111012

 Some bit-twiddling puzzles in Lab 1

61 Autumn 2014 Memory & data

University of Washington

Contrast: Logic Operations in C

 Contrast to logical operators
 && || !

 0 is “False”

 Anything nonzero is “True”

 Always return 0 or 1

 Early termination a.k.a. short-circuit evaluation

 Examples (char data type)
 !0x41 --> 0x00

 !0x00 --> 0x01

 !!0x41 --> 0x01

 0x69 && 0x55 --> 0x01

 0x69 || 0x55 --> 0x01

 p && *p++ (avoids null pointer access, null pointer = 0x00000000)

62 Autumn 2014 Memory & data

