
University of Washington 

Announcements 

 On the website: cs.uw.edu/351 
 Anonymous feedback form 

 Lecture slides on the web schedule (these will be linked 1-2 days prior) 

 Lab 0, make sure to start early 

 Discussion boards 

 Videos for optional reference – not exactly the same slides as we’ll use 

 Tips for C, debugging, etc. 

 Lecture content 

 Office hours: Almost finalized, check the calendar 

 Anyone not yet enrolled, who did not sign sheet on Wed? If 
so, see me right after class. 
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Hardware: Logical View 
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Hardware: Semi-Logical View 

3 

G
ra

p
h

ic
s M

e
m

o
ry 

I/O 

CPU 

Sto
rage

 
A

u
d

io
 

N
e

tw
o

rk
 

U
SB

…
 

(Bus) 

Autumn 2014 Memory & data 



University of Washington 

Hardware: Physical View 
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CPU 

USB… 

I/O 
controller 

Storage connections 

Memory 
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Hardware: 351 View (version 0) 

 CPU executes instructions; memory stores data 

 To execute an instruction, the CPU must: 
 fetch an instruction; 

 fetch the data used by the instruction; and, finally, 

 execute the instruction on the data… 

 which may result in writing data back to memory. 
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CPU 

? 
data 
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Hardware: 351 View (version 1) 

 The CPU holds instructions temporarily in the instruction cache 

 The CPU holds data temporarily in a fixed number of registers 

 Instruction and operand fetching is HW-controlled 

 Data movement is programmer-controlled 

 We’ll learn about the instructions the CPU executes – 
take 352 to find out how it actually executes them 
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Hardware: 351 View (version 1) 

 The CPU holds instructions temporarily in the instruction cache. 

 The CPU holds data temporarily in a fixed number of registers. 

 Instruction fetching is HW-controlled. 

 Data movement is programmer-controlled. 
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How are data 
and instructions 
represented? 

How does a 
program find its 
data in memory? 
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Roadmap 

car *c = malloc(sizeof(car)); 

c->miles = 100; 

c->gals = 17; 

float mpg = get_mpg(c); 

free(c); 

Car c = new Car(); 

c.setMiles(100); 

c.setGals(17); 

float mpg = 

    c.getMPG(); 

get_mpg: 

    pushq   %rbp 

    movq    %rsp, %rbp 

    ... 

    popq    %rbp 

    ret 

Java: C: 

Assembly 
language: 

Machine 
code: 

0111010000011000 

100011010000010000000010 

1000100111000010 

110000011111101000011111 

Computer 
system: 

OS: 

Memory & data 
Integers & floats 
Machine code & C 
x86 assembly 
Procedures & stacks 
Arrays & structs 
Memory & caches 
Processes 
Virtual memory 
Memory allocation 
Java vs. C 
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Memory, Data, and Addressing 

 Representing information as bits and bytes 

 Organizing and addressing data in memory 

 Manipulating data in memory using C 

 Boolean algebra and bit-level manipulations 
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Binary Representations 

 Base 2 number representation 
 A base 2 digit (0 or 1) is called a bit. 

 Represent 35110 as 00000001010111112  or  1010111112 

 

 Electronic implementation 
 Easy to store with bi-stable elements 

 Reliably transmitted on noisy and inaccurate wires  

0.0V 

0.5V 

2.8V 

3.3V 

0 1 0 
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Describing Byte Values 

 Binary  000000002 --  111111112 

 Byte = 8 bits (binary digits) 

 Decimal               010 --  25510 

 Hexadecimal                0016 --  FF16 

 Byte = 2 hexadecimal (or “hex” or base 16) digits 

 Base 16 number representation 

 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’ 

 Write FA1D37B16 in the C language  

 as   0xFA1D37B  or   0xfa1d37b 

 More on specific data types later… 

0 0 0000 
1 1 0001 
2 2 0010 
3 3 0011 
4 4 0100 
5 5 0101 
6 6 0110 
7 7 0111 
8 8 1000 
9 9 1001 
A 10 1010 
B 11 1011 
C 12 1100 
D 13 1101 
E 14 1110 
F 15 1111 
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Byte-Oriented Memory Organization 

 Conceptually, memory is a single, large array of bytes, 
each with an unique address (index) 

 The value of each byte in memory can be read and written 

 Programs refer to bytes in memory by their addresses 
 Domain of possible addresses = address space 

 But not all values (e.g., 351) fit in a single byte… 
 Store addresses to “remember” where other data is in memory 

 How much memory can we address with 1-byte (8-bit) addresses? 

 Many operations actually use multi-byte values 

• • • 
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Machine Words 

 Word size = address size = register size 

 Word size bounds the size of the address space and memory 
 word size = w bits  =>  2w addresses 

 Until recently, most machines used 32-bit (4-byte) words 

 Potential address space: 232 addresses 
232 bytes  4 x 109 bytes = 4 billion bytes = 4GB 

 Became too small for memory-intensive applications 

 Current x86 systems use 64-bit (8-byte) words 

 Potential address space: 264 addresses 
264 bytes  1.8 x 1019 bytes = 18 billion billion bytes = 18 EB (exabytes) 
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Word-Oriented Memory Organization 

 Addresses specify  
locations of bytes in memory 
 Address of word 

 = address of first byte in word 

 Addresses of successive words  
differ by word size (in bytes): 
e.g., 4 (32-bit) or 8 (64-bit) 

 Address of word 0, 1, .. 10? 

 

0000 
0001 
0002 
0003 
0004 
0005 
0006 
0007 
0008 
0009 
0010 
0011 

32-bit 
Words 

Bytes Addr. 

0012 
0013 
0014 
0015 

64-bit 
Words 

Addr  
= 
?? 

Addr  
= 
?? 

Addr  
= 
?? 

Addr  
= 
?? 

Addr  
= 
?? 

Addr  
= 
?? 
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Word-Oriented Memory Organization 

 Addresses still specify  
locations of bytes in memory 
 Address of word 

 = address of first byte in word 

 Addresses of successive words  
differ by word size (in bytes): 
e.g., 4 (32-bit) or 8 (64-bit) 

 Address of word 0, 1, .. 10? 

 Alignment 

 

0000 
0001 
0002 
0003 

0005 
0006 
0007 
0008 
0009 
0010 
0011 

32-bit 
Words 

Bytes Addr. 

0012 
0013 
0014 
0015 

64-bit 
Words 

Addr  
= 
?? 

Addr  
= 
?? 

Addr  
= 
?? 

Addr  
= 
?? 

Addr  
= 
?? 

Addr  
= 
?? 

0000 

0004 

0008 

0012 

0000 

0008 

17 

0004 
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Memory Alignment 

 Data of size n only stored at addresses a where a mod n = 0 
 Convention or rule, depending on platform 

 n is usually a power of 2 

 A 32-bit (4-byte) word-aligned 
view of memory: 
 Each row is a word  

composed of 4 bytes 

 Cells in a row are  
the word’s bytes 

18 

More about alignment later in the course 

0x00 0x01 0x02 0x03 

0x04 0x05 0x06 0x07 

… 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

(note hex 
addresses) 
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Addresses and Pointers 

 An address is a location in memory 

 A pointer is a data object that holds an address 

 The value 351 is stored at address 0x04 
 35110 = 15F16 = 0x00 00 01 5F 

5F 01 00 00 

19 

0x00 

0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

0x04 
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Addresses and Pointers 

 An address is a location in memory 

 A pointer is a data object that holds an address 

 The value 351 is stored at address 0x04 
 35110 = 15F16 = 0x00 00 01 5F 

 A pointer stored at address 0x1C 
points to address 0x04 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

04 00 00 00 

5F 01 00 00 
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Addresses and Pointers 

 An address is a location in memory 

 A pointer is a data object that holds an address 

 The value 351 is stored at address 0x04 
 35110 = 15F16 = 0x00 00 01 5F 

 A pointer stored at address 0x1C 
points to address 0x04 

 A pointer to a pointer  
is stored at address 0x24 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

04 00 00 00 

1C 00 00 00 

5F 01 00 00 
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Addresses and Pointers 

 An address is a location in memory 

 A pointer is a data object that holds an address. 

 The value 351 is stored at address 0x04 
 35110 = 15F16 = 0x00 00 01 5F 

 A pointer stored at address 0x1C 
points to address 0x04 

 A pointer to a pointer  
is stored at address 0x24 

 The value 12 is stored 
at address 0x14 
 Is it a pointer? 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

04 00 00 00 

1C 00 00 00 

5F 01 00 00 

0C 00 00 00 
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Sizes of data types (in bytes) 
Java Data Type C Data Type Typical 32-bit x86-64 

boolean bool 1 1 

byte char 1 1 

char  2 2 

short short int 2 2 

int int 4 4 

float float 4 4 

 long int 4 8 

double double 8 8 

long long long 8 8 

  long double 8 16 

(reference) pointer * 4 8 

 

Data Representations 
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Byte Ordering 

 How should bytes within a word be ordered in memory? 

 Example: Store the 4-byte word 0xa1 b2 c3 d4 
 In what order will the bytes be stored? 

 Conventions! 
 Big-endian, Little-endian 

 Based on Gulliver’s Travels: tribes cut eggs on different sides (big, little) 

24 Autumn 2014 Memory & data 
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Byte Ordering 

 Big-Endian (PowerPC, SPARC, The Internet) 
 Least significant byte has highest address 

 Little-Endian (x86) 
 Least significant byte has lowest address 

 Example 
 Variable has 4-byte representation 0xa1b2c3d4 

 Address of variable is 0x100 

 

 
0x100 0x101 0x102 0x103 

01 23 45 67 

0x100 0x101 0x102 0x103 

67 45 23 01 

Big Endian 

Little Endian 

a1 b2 c3 d4 

d4 c3 b2 a1 
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Byte Ordering Examples 
Decimal:          12345 

Binary:   0011 0000 0011 1001 

Hex:       3      0      3      9 

39 
30 
00 
00 

IA32, x86-64 
(little endian) 

00 
00 
00 
00 

39 
30 
00 
00 

x86-64 

39 
30 
00 
00 

IA32 

26 

30 
39 

00 
00 

SPARC 
(big endian) 

30 
39 

00 
00 

32-bit 
SPARC  

30 
39 

00 
00 

64-bit 
SPARC  

00 
00 
00 
00 
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int x = 12345; 

// or x = 0x3039; 

 

long int y = 12345; 

// or y = 0x3039; 

 

 

 

(A long int is the size 
of a word) 
 

0x00 

0x01 

0x02 

0x03 

0x00 

0x01 

0x02 

0x03 

0x00 

0x01 

0x02 

0x03 

0x00 

0x01 

0x02 

0x03 

0x00 

0x01 

0x02 

0x03 

0x04 

0x05 

0x06 

0x07 

0x00 

0x01 

0x02 

0x03 

0x04 

0x05 

0x06 

0x07 
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Reading Byte-Reversed Listings 

 Disassembly 
 Take binary machine code and generate an assembly code version 

 Does the reverse of the assembler 

 Example instruction in memory  
 add value 0x12ab to register ‘ebx’ (a special location in CPU’s memory) 

 
 Address Instruction Code Assembly Rendition 

8048366: 81 c3 ab 12 00 00     add    $0x12ab,%ebx 
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Reading Byte-Reversed Listings 

 Disassembly 
 Take binary machine code and generate an assembly code version 

 Does the reverse of the assembler 

 Example instruction in memory  
 add value 0x12ab to register ‘ebx’ (a special location in CPU’s memory) 

 
 Address Instruction Code Assembly Rendition 

8048366: 81 c3 ab 12 00 00     add    $0x12ab,%ebx 

Deciphering numbers 

 Value:  0x12ab 

 Pad to 32 bits:  0x000012ab 

 Split into bytes:  00 00 12 ab 

 Reverse (little-endian):  ab 12 00 00 
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Addresses and Pointers in C 

29 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 

int* ptr; 

 

 

int x = 5; 

int y = 2; 

 

ptr = &x; 

 

 

 

 

y = 1 + *ptr; 

Declares a variable, ptr, that is a pointer 
to (i.e., holds the address of) an int in 
memory 

Declares two variables, x and y, that hold 
ints, and sets them to 5 and 2, respectively 

Sets ptr to the address of 
x. 
Now, “ptr points to x” 

Sets y to “1 plus the value stored at the address held by ptr,   
because ptr points to x, this is equivalent to y=1+x; 
 

“Dereference ptr” 

What is   *(&y)    ? 

Autumn 2014 Memory & data 



University of Washington 

Assignment in C 

 A variable is represented by a memory location 

 Initially, it may hold any value 

 int x, y; 
 x is at location 0x04, y is at 0x18 

30 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

F3 29 01 00 

00 00 00 01 

x 

y 

00 32 00 A7 

EE EE EE EE 
FE CA CE FA 
00 00 00 26 
00 10 00 00 

96 F4 00 FF 
00 00 00 00 
34 17 42 00 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 
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variable declarations 
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Assignment in C 

 A variable is represented by a memory location 

 Initially, it may hold any value 

 int x, y; 
 x is at location 0x04, y is at 0x18 

31 

x 

y 

F3 29 01 00 

00 00 00 01 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 
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Assignment in C 

 Left-hand-side = right-hand-side; 
 LHS must evaluate to a memory location 

 RHS must evaluate to a value (could be an address!) 

 Store RHS value at LHS location 

 int x, y; 

 x = 0; 

32 

00 00 00 00 

00 00 00 01 

x 

y 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 
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Assignment in C 

 Left-hand-side = right-hand-side; 
 LHS must evaluate to a memory location 

 RHS must evaluate to a value (could be an address!) 

 Store RHS value at LHS location 

 int x, y; 

 x = 0; 

 y = 0x3CD02700; 

33 

00 00 00 00 

3C D0 27 00 

x 

y 

little endian! 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 
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Assignment in C 

 Left-hand-side = right-hand-side; 
 LHS must evaluate to a memory location 

 RHS must evaluate to a value (could be an address!) 

 Store RHS value at LHS location 

 int x, y; 

 x = 0; 

 y = 0x3CD02700; 

 x = y + 3; 
 Get value at y, add 3, put it in x 

 
 

34 

3C D0 27 03 

3C D0 27 00 

x 

y 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 
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Assignment in C 

 Left-hand-side = right-hand-side; 
 LHS must evaluate to a memory location 

 RHS must evaluate to a value (could be an address!) 

 Store RHS value at LHS location 

 int x, y; 

 x = 0; 

 y = 0x3CD02700; 

 x = y + 3;  
 Get value at y, add 3, put it in x 

 int* z 
 

35 

3C D0 27 03 

3C D0 27 00 

x 

y 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

z 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 
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Assignment in C 

 Left-hand-side = right-hand-side; 
 LHS must evaluate to a memory location 

 RHS must evaluate to a value (could be an address!) 

 Store RHS value at LHS location 

 int x, y; 

 x = 0; 

 y = 0x3CD02700; 

 x = y + 3;  
 Get value at y, add 3, put it in x 

 int* z = &y + 3; 
 Get address of y, add ???, put it in z 

 

36 

3C D0 27 03 

3C D0 27 00 

x 

y 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

z 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 
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Assignment in C 

 Left-hand-side = right-hand-side; 
 LHS must evaluate to a memory location 

 RHS must evaluate to a value (could be an address!) 

 Store RHS value at LHS location 

 int x, y; 

 x = 0; 

 y = 0x3CD02700; 

 x = y + 3; 
 Get value at y, add 3, put it in x 

 int* z = &y + 3; 
 Get address of y, add 12, put it in z 

37 

3C D0 27 03 

3C D0 27 00 

x 

y 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

z 00 00 00 24 

Pointer arithmetic is scaled by size of target type 

Pointer arithmetic 
can be dangerous 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 

Autumn 2014 Memory & data 
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         + 12 
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Assignment in C 

 Left-hand-side = right-hand-side; 
 LHS must evaluate to a memory location 

 RHS must evaluate to a value (could be an address!) 

 Store RHS value at LHS location 

 int x, y; 

 x = 0; 

 y = 0x3CD02700; 

 x = y + 3;  
 Get value at y, add 3, put it in x 

 int* z = &y + 3; 
 Get address of y, add 12, put it in z 

 *z = y; 
 What does this do? 

38 

3C D0 27 03 

3C D0 27 00 

x 

y 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

z 00 00 00 24 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 
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Assignment in C 

 Left-hand-side = right-hand-side; 
 LHS must evaluate to a memory location 

 RHS must evaluate to a value (could be an address!) 

 Store RHS value at LHS location 

 int x, y; 

 x = 0; 

 y = 0x3CD02700; 

 x = y + 3;   
 Get value at y, add 3, put it in x 

 int* z = &y + 3; 
 Get address of y, add 12, put it in z 

 *z = y; 
 Get value of y, put it at the address stored in z 

 39 

3C D0 27 03 

3C D0 27 00 

x 

y 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

z 00 00 00 24 
3C D0 27 00 

The target of a pointer is 
also a memory location 

& = ‘address of’ 
* = ‘value at address’ 
        or ‘dereference’ 
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Arrays in C 

40 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

Declaration:  int a[6]; a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

element type 

name 
number of 
elements 

Autumn 2014 Memory & data 
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Arrays in C 

41 

00 00 01 5F 

00 00 01 5F 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

Declaration:  

a[0] 
a[1] 

a[5] 

… 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  

int a[6]; 

The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

Autumn 2014 Memory & data 
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Arrays in C 

42 

00 00 01 5F 

00 00 01 5F 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

Declaration:  

a[0] 
a[1] 

a[5] 

… 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

No bounds 
check:  

00 00 0B AD 

00 00 0B AD 

int a[6]; 

The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

Autumn 2014 Memory & data 

0x00 0x01 0x02 0x03 
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Arrays in C 

43 

00 00 01 5F 

00 00 01 5F 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

00 00 00 04 

Declaration:  

p 

a[0] 
a[1] 

a[5] 

… 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  

Pointers:  

{ equivalent 

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

No bounds 
check:  

00 00 0B AD 

00 00 0B AD int* p; 
p = a; 
p = &a[0]; 
 

int a[6]; 

The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

Autumn 2014 Memory & data 
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Arrays in C 

44 

00 00 01 5F 

00 00 01 5F 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

00 00 00 04 

Declaration:  

p 

a[0] 
a[1] 

a[5] 

… 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  

Pointers:  

{ equivalent 

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

No bounds 
check:  

00 00 0B AD 

00 00 0B AD int* p; 
p = a; 
p = &a[0]; 
*p = 0xA; 

int a[6]; 

The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

Autumn 2014 Memory & data 
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Arrays in C 

45 

00 00 00 0A 

00 00 01 5F 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

00 00 00 04 

Declaration:  

p 

a[0] 
a[1] 

a[5] 

… 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  

Pointers:  

{ equivalent 

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

No bounds 
check:  

00 00 0B AD 

00 00 0B AD int* p; 
p = a; 
p = &a[0]; 
*p = 0xA; 

int a[6]; 

The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 
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0x00 0x01 0x02 0x03 
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Arrays in C 
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00 00 00 0A 

00 00 01 5F 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

00 00 00 04 

Declaration:  

p 

a[0] 
a[1] 

a[5] 

… 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  

Pointers:  

{ equivalent 

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

No bounds 
check:  

00 00 0B AD 

00 00 0B AD 

00 00 00 0B 

int* p; 
p = a; 
p = &a[0]; 
*p = 0xA; 

p[1] = 0xB; 
 

int a[6]; 

The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

Autumn 2014 Memory & data 

0x00 0x01 0x02 0x03 
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array indexing = address arithmetic 
Both are scaled by the size of the type 

Arrays in C 
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00 00 00 0A 

00 00 01 5F 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

00 00 00 04 

Declaration:  

p 

a[0] 
a[1] 

a[5] 

… 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  

Pointers:  

{ equivalent 

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

No bounds 
check:  

00 00 0B AD 

00 00 0B AD 

00 00 00 0B 

int* p; 
p = a; 
p = &a[0]; 
*p = 0xA; 

p[1] = 0xB; 
 

int a[6]; 

The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 
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0x00 0x01 0x02 0x03 
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array indexing = address arithmetic 
Both are scaled by the size of the type 

Arrays in C 
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00 00 00 0A 

00 00 01 5F 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

00 00 00 04 

Declaration:  

p 

a[0] 
a[1] 

a[5] 

… 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  

Pointers:  

{ equivalent 

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

No bounds 
check:  

00 00 0B AD 

00 00 0B AD 

00 00 00 0B 

int* p; 
p = a; 
p = &a[0]; 
*p = 0xA; 

{ equivalent 
p[1] = 0xB; 
*(p + 1) = 0xB; 

int a[6]; 

The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

Autumn 2014 Memory & data 

0x00 0x01 0x02 0x03 
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array indexing = address arithmetic 
Both are scaled by the size of the type 

Arrays in C 
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00 00 00 0A 

00 00 01 5F 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

00 00 00 04 

Declaration:  

p 

a[0] 
a[1] 

a[5] 

… 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  

Pointers:  

{ equivalent 

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

No bounds 
check:  

00 00 0B AD 

00 00 0B AD 

00 00 00 0B 

int* p; 
p = a; 
p = &a[0]; 
*p = 0xA; 

{ equivalent 
p[1] = 0xB; 
*(p + 1) = 0xB; 
p = p + 2; 
 

int a[6]; 

The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

Autumn 2014 Memory & data 

0x00 0x01 0x02 0x03 
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array indexing = address arithmetic 
Both are scaled by the size of the type 

Arrays in C 
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00 00 00 0A 

00 00 01 5F 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

00 00 00 0C 

Declaration:  

p 

a[0] 
a[1] 

a[5] 

… 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  

Pointers:  

{ equivalent 

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

No bounds 
check:  

00 00 0B AD 

00 00 0B AD 

00 00 00 0B 

int* p; 
p = a; 
p = &a[0]; 
*p = 0xA; 

{ equivalent 
p[1] = 0xB; 
*(p + 1) = 0xB; 
p = p + 2; 

int a[6]; 

The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

Autumn 2014 Memory & data 

0x00 0x01 0x02 0x03 



University of Washington 

array indexing = address arithmetic 
Both are scaled by the size of the type 

Arrays in C 
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00 00 00 0A 

00 00 01 5F 

0x00 
0x04 
0x08 
0x0C 
0x10 
0x14 
0x18 
0x1C 
0x20 
0x24 

00 00 00 0C 

Declaration:  

p 

a[0] 
a[1] 

a[5] 

… 

a[0] = 0x015f; 
a[5] = a[0]; 

Indexing:  

Pointers:  

{ equivalent 

a[6] = 0xBAD; 
a[-1] = 0xBAD; 
 

No bounds 
check:  

00 00 0B AD 

00 00 0B AD 

00 00 00 0B 

int* p; 
p = a; 
p = &a[0]; 
*p = 0xA; 

{ equivalent 
p[1] = 0xB; 
*(p + 1) = 0xB; 
p = p + 2; 

int a[6]; 

*p = a[1] + 1; 

00 00 00 0C 

The address of a[i] is the address of a[0] 
plus i times the element size in bytes 

a is a name for the array’s address 

Arrays are adjacent locations in memory 
storing the same type of data object 

Autumn 2014 Memory & data 

0x00 0x01 0x02 0x03 
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Representing strings 
 A C-style string is represented by an array of bytes (char) 

— Elements are one-byte ASCII codes for each character 

— ASCII = American Standard Code for Information Interchange 
32 space 48 0 64 @ 80 P 96 ` 112 p 

33 ! 49 1 65 A 81 Q 97 a 113 q 

34 ” 50 2 66 B 82 R 98 b 114 r 

35 # 51 3 67 C 83 S 99 c 115 s 

36 $ 52 4 68 D 84 T 100 d 116 t 

37 % 53 5 69 E 85 U 101 e 117 u 

38 & 54 6 70 F 86 V 102 f 118 v 

39 ’ 55 7 71 G 87 W 103 g 119 w 

40 ( 56 8 72 H 88 X 104 h 120 x 

41 ) 57 9 73 I 89 Y 105 I 121 y 

42 * 58 : 74 J 90 Z 106 j 122 z 

43 + 59 ; 75 K 91 [ 107 k 123 { 

44 , 60 < 76 L 92 \ 108 l 124 | 

45 - 61 = 77 M 93 ] 109 m 125 } 

46 . 62 > 78 N 94 ^ 110 n 126 ~ 

47 / 63 ? 79 O 95 _ 111 o 127 del 
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Null-terminated Strings 

72 97 114 114 121 32 80 111 116 116 101 114 0 

H a r r y P o t t e r \0 

53 

 For example, “Harry Potter” can be stored as a 13-byte array 

 

 

 

 Why do we put a 0, or null zero, at the end of the string? 
 Note the special symbol: string[12] = '\0'; 

 

 How do we compute the string length? 

 

Autumn 2014 Memory & data 



University of Washington 

char s[6] = "12345"; 

Endianness and Strings 

 Byte ordering (endianness) is not an issue for 1-byte values 
 The whole array does not constitute a single value 

 Individual elements are values; chars are single bytes 

 Unicode characters – up to 4 bytes/character 
 ASCII codes still work (just add leading zeros) 

 Unicode can support the many characters in all languages in the world 

 Java and C have libraries for Unicode (Java commonly uses 2 bytes/char) 

33 
34 

31 
32 

35 
00 

33 
34 

31 
32 

35 
00 

54 

C (char = 1 byte) 
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0x00 

0x01 

0x02 

0x03 

0x04 

0x05 

0x00 

0x01 

0x02 

0x03 

0x04 

0x05 Note: 0x31 = 49 decimal = ASCII ‘1’ 

‘1’ 

‘2’ 

‘3’ 

‘4’ 

‘5’ 

‘\0’ 

IA32, x86-64 
(little endian) 

SPARC 
(big endian) 
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 Code to print byte representation of data 
 Any data type can be treated as a byte array by casting it to char 

 C has unchecked casts.  << DANGER >> 

Examining Data Representations 

void show_bytes(char* start, int len) { 

  int i; 

  for (i = 0; i < len; i++) 

    printf("%p\t0x%.2x\n", start+i, *(start+i)); 

  printf("\n"); 

} 

printf directives: 
 %p Print pointer 
 \t Tab 
 %x Print value as hex 
 \n New line 

55 

void show_int (int x) { 

  show_bytes( (char *) &x, sizeof(int)); 

} 
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show_bytes Execution Example 

int a = 12345; // represented as 0x00003039 

printf("int a = 12345;\n"); 

show_int(a);  // show_bytes((char *) &a, sizeof(int)); 

Result: 

int a = 12345;    

0x11ffffcb8 0x39 

0x11ffffcb9 0x30 

0x11ffffcba 0x00 

0x11ffffcbb 0x00 

56 Autumn 2014 Memory & data 



University of Washington 

Boolean Algebra 

 Developed by George Boole in 19th Century 

 Algebraic representation of logic 

 Encode “True” as 1 and “False” as 0 

 AND: A&B = 1 when both A is 1 and B is 1 

 OR: A|B = 1 when either A is 1 or B is 1 

 XOR: A^B = 1 when either A is 1 or B is 1, but not both 

 NOT: ~A = 1 when A is 0 and vice-versa 

 DeMorgan’s Law:  ~(A | B) = ~A & ~B 
                 ~(A & B) = ~A | ~B 

 

 

 

 

& 0 1

0 0 0

1 0 1

~

0 1

1 0
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Boolean Algebra 

 Developed by George Boole in 19th Century 

 Algebraic representation of logic 

 Encode “True” as 1 and “False” as 0 

 AND: A&B = 1 when both A is 1 and B is 1 

 OR: A|B = 1 when either A is 1 or B is 1 

 XOR: A^B = 1 when either A is 1 or B is 1, but not both 

 NOT: ~A = 1 when A is 0 and vice-versa 

 DeMorgan’s Law:  ~(A | B) = ~A & ~B 
                 ~(A & B) = ~A | ~B 

 

 

 

 

 

& 0 1

0 0 0

1 0 1

~

0 1

1 0

| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0
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General Boolean Algebras 

 Operate on bit vectors 
 Operations applied bitwise 

 

 

 

 All of the properties of Boolean algebra apply 
 

 

 

 

 How does this relate to set operations? 
 

    01101001 
& 01010101 

  01000001 

   01101001 
| 01010101 
  01111101 

   01101001 
^ 01010101 
  00111100 

   
~ 01010101 
  10101010 

   01010101 
^ 01010101 
  00000000 
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Representing & Manipulating Sets 

 Representation 
 A w-bit vector represents subsets of {0, …, w–1} 

 aj = 1 iff j   A 

01101001 { 0, 3, 5, 6 } 

76543210 

 

01010101 { 0, 2, 4, 6 } 

76543210 

 Operations 
 &  Intersection 01000001 { 0, 6 } 

 |   Union 01111101 { 0, 2, 3, 4, 5, 6 } 

 ^ Symmetric difference 00111100 { 2, 3, 4, 5 } 

 ~ Complement 10101010 { 1, 3, 5, 7 } 
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Bit-Level Operations in C 

 &   |   ^   ~ 
 Apply to any “integral” data type 

 long,  int,  short,  char, unsigned 

 View arguments as bit vectors 

 Examples (char data type) 
 ~0x41 -->  0xBE 

~010000012 --> 101111102 

 ~0x00 -->  0xFF 

~000000002 --> 111111112 

 0x69 & 0x55  -->  0x41 

011010012 & 010101012 --> 010000012 

 0x69 | 0x55  -->  0x7D 

011010012 | 010101012 --> 011111012 

 Some bit-twiddling puzzles in Lab 1 
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Contrast: Logic Operations in C 

 Contrast to logical operators 
 &&     ||     ! 

 0 is “False” 

 Anything nonzero is “True” 

 Always return 0 or 1 

 Early termination    a.k.a.   short-circuit evaluation 

 Examples (char data type) 
 !0x41  -->  0x00 

 !0x00  -->  0x01 

 !!0x41 -->  0x01 

 

 0x69 && 0x55  -->  0x01 

 0x69 || 0x55  -->  0x01 

 p && *p++ (avoids null pointer access, null pointer = 0x00000000 ) 
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