CSE 351: The Hardware/Software Interface

Section 2

Integer representations, two’s complement, and bitwise operators
Integer representations

- In addition to decimal notation, it’s important to be able to understand binary and hexadecimal representations of integers
 - **Decimal**: 3735928559
 - No prefix, just the number
 - **Binary**: 0b11011110101101101111011101111
 - “0b” prefix denotes binary notation
 - **Hexadecimal**: 0xDEADBEEF
 - “0x” prefix denotes hexadecimal notation
- Which notation is the most compact of the three? Why use one over another?
Binary scale

- Each digit in binary notation is either 0b0 (zero) or 0b1 (one)
- To convert from (unsigned) binary to decimal notation, take the sum of the nth digit multiplied by 2^{n-1}
- As an example, 0b1101 = $1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 8 + 4 + 0 + 1 = 13$
Binary scale

- To convert from decimal to binary, use a combination of division and modulus to get each digit, tracking the remainder.

- As an example, let’s convert 11 to binary:
 - $(11 / 2^0) \ % \ 2 = 1$, so the first digit is 0b1. Remainder is $11 - 1 \times 2^0 = 10$
 - $(10 / 2^1) \ % \ 2 = 5 \ % \ 2 = 1$, so the second digit is 0b1. Remainder is $10 - 1 \times 2^1 = 8$
 - $(8 / 2^2) \ % \ 2 = 4 \ % \ 2 = 0$, so the third digit is 0b0. Remainder is $8 - 0 \times 2^2 = 8$
 - $(8 / 2^3) \ % \ 2 = 1 \ % \ 2 = 1$, so the fourth digit is 0b1
- Finally, we have that 11 is 0b1011 in binary.
Hexadecimal scale

- Each digit ranges in value from 0x0 (zero) to 0xF (fifteen)
 - A => ten, B => eleven, C => twelve, D => thirteen, E => fourteen, F => fifteen
- To convert from (unsigned) hexadecimal to decimal notation, take the sum of the nth digit multiplied by 16^{n-1}
 - As an example, 0xACE = 0xA * 16^2 + 0xC * 16^1 + 0xE * 16^0 = 10 * 256 + 12 * 16 + 14 = 2766
Hexadecimal scale

- The decimal to hexadecimal conversion is the same process as decimal to binary except with 2 instead of 16
- As an example, let’s convert 3254 to hexadecimal
 - \((3254 / 16^0) \% 16 = 6\), so first digit is 0x6. Remainder is \(3254 - 0x6 * 16^0 = 3248\)
 - \((3248 / 16^1) \% 16 = 203 \% 16 = 11 = 0xB\), so second digit is 0xB. Remainder is \(3248 - 0xB * 16^1 = 3248 - 176 = 3072\)
 - \((3072 / 16^2) \% 16 = 12 \% 16 = 12 = 0xC\), so third digit is 0xC
 - Finally, we have that 3254 is 0xCB6 in hexadecimal
- If we were to write a program to convert from decimal to binary or to hexadecimal, how could we compute the \(n\)th digit efficiently using bitwise operators and modulus (%)?

1/17/13
In class, we established that two’s complement is a nice format for representing signed integers for a couple different reasons. What were they?
Let’s say that we want to encode -5 in binary using two’s complement form and four bits.

With four bits, the highest bit has a negative weight of 2^3, so $0b1000 = -8$

$-5 = -8 + 2 + 1$

$= 1 \times -2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$

$= 10b1011$

$5 = 4 + 1$

$= 0 \times -2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$

$= 0b0101$
Operator review

~ is arithmetic not (flip all bits)
 Example: ~0b1010 = 0b0101

! is logical not (1 if 0b0, else 0)
 Example: !0b100 = 0, !0b0 = 1

& is bitwise and
 Example: 0b101 & 0b110 = 0b100

| is bitwise or
 Example: 0b101 | 0b100 = 0b101

>> is bitwise right shift
 Example: 0b1010 >> 1 = 0b1101, 0b0101 >> 1 = 0b0010

<< is bitwise left shift
 Example: 0b1010 << 1 = 0b0100, 0b1000 << 1 = 0b0000
Operator uses

* Can express negation in terms of arithmetic not and addition
 * For example, \(\sim 4 + 1 = \sim 0b0100 + 1 = 0b1011 + 1 = -5 + 1 = -4 \)

* Can use shifting, bitwise and, and logical not to detect if a particular bit is set
 * As a simple example, \(!!(x \& (0x1 << 1))\) evaluates to 1 if the second bit it set in \(x\) and 0 otherwise
 * Useful for checking if a value is negative

* Can implement ternaries \(x = ___ ? ___ : ___\) using bitwise and, bitwise or, and arithmetic not
 * This has wide-ranging applications in lab 1
Bitwise operators in practice

Is what we’re learning ever useful in practice?

Thankfully (or not, depending on how you look at it), it is

Setting bits in permission strings

For example, to choose the
Packing and unpacking

• Let’s say that you have values x, y, and z that take 3, 4, and 1 bit to represent, respectively
• Is there a way to store these three values using only eight bits?
• In C, we can define a struct that specifies the width in bits of each value
 • ...though the compiler will add padding to make the struct a certain size if you don’t do so yourself
• In Java, there are no structs, and we have to use bitwise operators
Packing and unpacking (C)

```c
#include <stdio.h>

typedef struct {
    int x : 3;
    int y : 4;
    int z : 1;
    int padding : 24;
} Flags;

int main(int argc, char* argv[]) {
    Flags flags = {3, 8, 1, 0x8fffff};
    printf("sizeof(flags) is %ju and it stores 0x%x\n",
            sizeof(flags), *(int*) &flags);

    return 0;
}
```
Packing and unpacking (Java)

// Pack some values into a byte
byte bitValue = 0;
bitValue |= 3;
bitValue |= 8 << 3;
bitValue |= 1 << 7;

// Unpack the values from the byte
byte x = bitValue & 0x7;
byte y = bitValue & 0x78;
byte z = bitValue & 0x80;

// Alternatively, we could have shifted a particular
// mask instead, e.g. (0x1 << 7) instead of 0x80
Lab 1 hints

- Decompose each problem into smaller problems
- If you are stuck on how to solve something, write it as a combination of functions and boolean logic
 - Over time, replace each function or boolean operator with a combination of permitted operators
- Hint for detecting overflow: what is the sign of the integer produced by adding Tmax to a positive value? What about when adding negative numbers?
- Hint for counting bits: consider multiple bits at once. 40 operations isn’t enough to check each individually