The Hardware/Software Interface
CSE351 Winter 2013

Memory and Caches II
Types of Cache Misses

- **Cold (compulsory) miss**
 - Occurs on very first access to a block

- **Conflict miss**
 - Occurs when some block is evicted out of the cache, but then that block is referenced again later
 - Conflict misses occur when the cache is large enough, but multiple data blocks all map to the same slot
 - e.g., if blocks 0 and 8 map to the same cache slot, then referencing 0, 8, 0, 8, ... would miss every time
 - Conflict misses may be reduced by increasing the associativity of the cache

- **Capacity miss**
 - Occurs when the set of active cache blocks (the working set) is larger than the cache (just won’t fit)
General Cache Organization (S, E, B)

- **S** = 2^s sets
- **E** = 2^e lines per set
- **B** = 2^b bytes of data per cache line (the data block)

cache size:

$S \times E \times B$ data bytes

Winter 2013
Cache Read

\[E = 2^e \text{ lines per set} \]

\[S = 2^s \text{ sets} \]

Address of byte in memory:
- \(t \) bits: tag
- \(s \) bits: set index
- \(b \) bits: block offset

Data begins at this offset

- Locate set
- Check if any line in set has matching tag
- Yes + line valid: hit
- Locate data starting at offset

\[B = 2^b \text{ bytes of data per cache line (the data block)} \]
Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set
Assume: cache block size 8 bytes

\begin{itemize}
\item S = 2^5 sets
\item Address of int: \(\text{t bits} \ 0...01 \ 100 \)
\item find set
\end{itemize}

\begin{figure}
\centering
\begin{tikzpicture}
\node at (0,0) {
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
v & tag & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
v & tag & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
v & tag & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
\end{tabular}
\end{tikzpicture}
\end{figure}
Example: Direct-Mapped Cache ($E = 1$)

Direct-mapped: One line per set
Assume: cache block size 8 bytes
Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set
Assume: cache block size 8 bytes

No match: old line is evicted and replaced
Example (for $E = 1$)

```c
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];

    return sum;
}
```

```c
int sum_array_cols(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (j = 0; j < 16; j++)
        for (i = 0; i < 16; i++)
            sum += a[i][j];

    return sum;
}
```

Assume sum, i, j in registers

Address of an aligned element of a: aa...ayyyyyyyyyyyyyyyyyyyyy

Assume: cold (empty) cache

3 bits for set, 5 bits for offset

aa...ayyy yxx xx000

0,0: aa...a000 0000 0000

32 B = 4 doubles

4 misses per row of array
$4 \times 16 = 64$ misses

$32 \times 16 = 256$ misses
Example (for E = 1)

```c
float dotprod(float x[8], float y[8])
{
    float sum = 0;
    int i;
    for (i = 0; i < 8; i++)
        sum += x[i]*y[i];
    return sum;
}
```

In this example, cache blocks are 16 bytes; 8 sets in cache

- How many block offset bits?
- How many set index bits?

Address bits: ttt....t sss bbbb
- \(B = 16 = 2^b \): \(b = 4 \) offset bits
- \(S = 8 = 2^s \): \(s = 3 \) index bits

0: 000....0 000 0000
128: 000....1 000 0000
160: 000....1 010 0000

If \(x \) and \(y \) have aligned starting addresses, e.g., \&x[0] = 0, \&y[0] = 128

If \(x \) and \(y \) have unaligned starting addresses, e.g., \&x[0] = 0, \&y[0] = 160
E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

```
 0...01 100
```

find set

```
v  tag  0 1 2 3 4 5 6 7  
v  tag  0 1 2 3 4 5 6 7  
v  tag  0 1 2 3 4 5 6 7  
v  tag  0 1 2 3 4 5 6 7  
v  tag  0 1 2 3 4 5 6 7  
v  tag  0 1 2 3 4 5 6 7  
v  tag  0 1 2 3 4 5 6 7  
v  tag  0 1 2 3 4 5 6 7  
```
E-way Set-Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

```
t bits
0...01 100
```

Address of short int:

```
t bits
0...01 100
```

valid? + match: yes = hit
E-way Set-Associative Cache (Here: \(E = 2\))

\(E = 2\): Two lines per set
Assume: cache block size 8 bytes

Address of short int:

| t bits | 0…01 | 100 |

valid? + match: yes = hit

Compare both

short int (2 Bytes) is here

No match:

- One line in set is selected for eviction and replacement
- Replacement policies: random, least recently used (LRU), …
Example (for E = 2)

```c
float dotprod(float x[8], float y[8])
{
    float sum = 0;
    int i;

    for (i = 0; i < 8; i++)
        sum += x[i]*y[i];
    return sum;
}
```

If `x` and `y` have aligned starting addresses, e.g. `&x[0] = 0, &y[0] = 128`, can still fit both because two lines in each set
Fully Set-Associative Caches ($S = 1$)

- **Fully-associative caches have all lines in one single set, $S = 1$**
 - $E = C / B$, where C is total cache size
 - Since, $S = (C / B) / E$, therefore, $S = 1$

- **Direct-mapped caches have $E = 1$**
 - $S = (C / B) / E = C / B$

- **Tag matching is more expensive in associative caches**
 - Fully-associative cache needs C / B tag comparators: one for every line!
 - Direct-mapped cache needs just 1 tag comparator
 - In general, an E-way set-associative cache needs E tag comparators

- **Tag size, assuming m address bits ($m = 32$ for IA32):**
 - $m – \log_2 S – \log_2 B$
Intel Core i7 Cache Hierarchy

Processor package

Core 0
- Regs
- L1 d-cache
- L1 i-cache
- L2 unified cache
- L3 unified cache (shared by all cores)

Core 3
- Regs
- L1 d-cache
- L1 i-cache
- L2 unified cache

Main memory

L1 i-cache and d-cache: 32 KB, 8-way, Access: 4 cycles

L2 unified cache: 256 KB, 8-way, Access: 11 cycles

L3 unified cache: 8 MB, 16-way, Access: 30-40 cycles

Block size: 64 bytes for all caches.
What about writes?

- Multiple copies of data exist:
 - L1, L2, possibly L3, main memory

- What to do on a write-hit?
 - Write-through (write immediately to memory)
 - Write-back (defer write to memory until line is evicted)
 - Need a *dirty bit* to indicate if line is different from memory or not

- What to do on a write-miss?
 - Write-allocate (load into cache, update line in cache)
 - Good if more writes to the location follow
 - No-write-allocate (just write immediately to memory)

- Typical caches:
 - Write-back + Write-allocate, usually
 - Write-through + No-write-allocate, occasionally
Software Caches are More Flexible

Examples
- File system buffer caches, web browser caches, etc.

Some design differences
- Almost always fully-associative
 - so, no placement restrictions
 - index structures like hash tables are common (for placement)
- Often use complex replacement policies
 - misses are very expensive when disk or network involved
 - worth thousands of cycles to avoid them
- Not necessarily constrained to single “block” transfers
 - may fetch or write-back in larger units, opportunistically
Optimizations for the Memory Hierarchy

- Write code that has locality
 - Spatial: access data contiguously
 - Temporal: make sure access to the same data is not too far apart in time

- How to achieve?
 - Proper choice of algorithm
 - Loop transformations
Example: Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 c[i*n + j] += a[i*n + k]*b[k*n + j];
}
Cache Miss Analysis

- **Assume:**
 - Matrix elements are doubles
 - Cache block = 64 bytes = 8 doubles
 - Cache size C << n (much smaller than n)

- **First iteration:**
 - \(\frac{n}{8} + n = \frac{9n}{8} \) misses (omitting matrix \(c \))
 - Afterwards **in cache:** (schematic)
Cache Miss Analysis

Assume:
- Matrix elements are doubles
- Cache block = 64 bytes = 8 doubles
- Cache size $C << n$ (much smaller than n)

Other iterations:
- Again:
 $n/8 + n = 9n/8$ misses
 (omitting matrix c)

Total misses:
- $9n/8 \times n^2 = (9/8) \times n^3$
Blocked Matrix Multiplication

```c
double *c = calloc(sizeof(double), n*n);

void mmm(double *a, double *b, double *c, int n) {
    int i, j, k;
    for (i = 0; i < n; i+=B)
        for (j = 0; j < n; j+=B)
            for (k = 0; k < n; k+=B)
                /* B x B mini matrix multiplications */
                    for (i1 = i; i1 < i+B; i1++)
                        for (j1 = j; j1 < j+B; j1++)
                            for (k1 = k; k1 < k+B; k1++)
                                c[i1*n + j1] += a[i1*n + k1]*b[k1*n + j1];
}
```

Diagram:
- Matrix c
- Matrices a and b
- Block size B x B

Equation:
\[c = a \times b \]
Cache Miss Analysis

Assume:
- Cache block = 64 bytes = 8 doubles
- Cache size $C \ll n$ (much smaller than n)
- Three blocks fit into cache: $3B^2 < C$

First (block) iteration:
- $B^2/8$ misses for each block
- $2n/B \times B^2/8 = nB/4$ (omitting matrix c)
- Afterwards in cache (schematic)
Cache Miss Analysis

Assume:
- Cache block = 64 bytes = 8 doubles
- Cache size $C \ll n$ (much smaller than n)
- Three blocks fit into cache: $3B^2 < C$

Other (block) iterations:
- Same as first iteration
- $2n/B \times B^2/8 = nB/4$

Total misses:
- $nB/4 \times (n/B)^2 = n^3/(4B)$
Summary

- No blocking: \((9/8) * n^3\)
- Blocking: \(1/(4B) * n^3\)

If \(B = 8\) difference is \(4 \times 8 \times 9 / 8 = 36\times\)
If \(B = 16\) difference is \(4 \times 16 \times 9 / 8 = 72\times\)

Suggests largest possible block size \(B\), but limit \(3B^2 < C\)!

Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - Input data: \(3n^2\), computation \(2n^3\)
 - Every array element used \(O(n)\) times!
 - But program has to be written properly
Cache-Friendly Code

- **Programmer can optimize for cache performance**
 - How data structures are organized
 - How data are accessed
 - Nested loop structure
 - Blocking is a general technique

- **All systems favor “cache-friendly code”**
 - Getting absolute optimum performance is very platform specific
 - Cache sizes, line sizes, associativities, etc.
 - Can get most of the advantage with generic code
 - Keep working set reasonably small (temporal locality)
 - Use small strides (spatial locality)
 - Focus on inner loop code
The Memory Mountain

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache
256 KB unified L2 cache
8M unified L3 cache
All caches on-chip

Working set size (bytes)

Stride (x8 bytes)

Read throughput (MB/s)