The Hardware/Software Interface
CSE351 Winter 2013

Integers

Today’s Topics
- Representation of integers: unsigned and signed
- Casting
- Arithmetic and shifting
- Sign extension

But before we get to integers…
- How about encoding a standard deck of playing cards?
- 52 cards in 4 suits
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?
Two possible representations

- 52 cards – 52 bits with bit corresponding to card set to 1
 - "One-hot" encoding
 - Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required
- 4 bits for suit, 13 bits for card value – 17 bits with two set to 1
 - "Two-hot" (?) encoding
 - Easier to compare suits and values
 - Still an excessive number of bits

Two better representations

- Binary encoding of all 52 cards – only 6 bits needed
 - Fits in one byte
 - Smaller than one-hot or two-hot encoding, but how can we make value and suit comparisons easier?
- Binary encoding of suit (2 bits) and value (4 bits) separately
 - Also fits in one byte, and easy to do comparisons

Some basic operations

- Checking if two cards have the same suit:
 - \#define SUIT_MASK 0x30
 - char array[5]; // represents a 5 card hand
 - char card1, card2; // two cards to compare
 - card1 = array[0];
 - card2 = array[1];
 - \(\text{SUIT_MASK} = 0x30; \)
 - \(\begin{array}{c}
 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
 \end{array} \)
 - if sameSuitP(card1, card2) {
 - suit
 - value
 - }

bool sameSuitP(char card1, char card2) {
 return !((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK));
 //return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}

- Comparing the values of two cards:
 - \#define SUIT_MASK 0x30
 - \#define VALUE_MASK 0x0F
 - char array[5]; // represents a 5 card hand
 - char card1, card2; // two cards to compare
 - card1 = array[0];
 - card2 = array[1];
 - \(\text{VALUE_MASK} = 0x0F; \)
 - \(\begin{array}{c}
 0 & 0 & 0 & 1 & 1 & 1 \\
 \end{array} \)
 - if greaterValue(card1, card2) {
 - suit
 - value
 - }

bool greaterValue(char card1, char card2) {
 return ((unsigned int)(card1 & VALUE_MASK) >
 (unsigned int)(card2 & VALUE_MASK));
}
Encoding Integers

- The hardware (and C) supports two flavors of integers:
 - unsigned – only the non-negatives
 - signed – both negatives and non-negatives

- There are only 2^W distinct bit patterns of W bits, so...
 - Can’t represent all the integers
 -Unsigned values are $0 \ldots 2^W - 1$
 -Signed values are $-2^{W-1} \ldots 2^{W-1} - 1$

Reminder: terminology for binary representations:

"Most-significant" or "high-order" bit(s) "Least-significant" or "low-order" bit(s)

011001011010100

Unsigned Integers

- Unsigned values are just what you expect
 - $b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + b_52^5 + \ldots + b_12^1 + b_02^0$
 - Useful formula: $1+2+4+8+\ldots+2^{W-1} = 2^W - 1$

- You add/subtract them using the normal “carry/borrow” rules, just in binary

Signed Integers

- Let’s do the natural thing for the positives
 - They correspond to the unsigned integers of the same value
 - Example (8 bits): Ox00 = 0, Ox01 = 1, ..., Ox7F = 127
- But, we need to let about half of them be negative
 - Use the high order bit to indicate negative: call it the "sign bit"
 - Call this a “sign-and-magnitude” representation
 - Examples (8 bits):
 - Ox00 = 00000000, is non-negative, because the sign bit is 0
 - Ox7F = 11111111, is non-negative
 - Ox85 = 10000101, is negative
 - Ox80 = 10000000, is negative...

Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - Sign-and-magnitude: 10000001,
 Use the MSB for + or -, and the other bits to give magnitude
Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - Sign-and-magnitude: 10000001
 Use the MSB for + or -, and the other bits to give magnitude
 (Unfortunate side effect: there are two representations of 0!)

Two’s Complement Negatives

- How should we represent -1 in binary?
 - Rather than a sign bit, let MSB have same value, but negative weight
 - W-bit word: Bits 0, 1, ..., W-2 add 2^0, 2^1, ..., 2^{W-2} to value of integer
 when set, but bit W-1 adds -2^{W-1} when set
 - e.g. unsigned 1010: $1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 10_{10}$
 2’s comp. 1010: $-1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = -6_{10}$
 - So -1 represented as 1111; all negative integers still have MSB = 1
 - Advantages of two’s complement:
 - only one zero, simple arithmetic
 - To get negative representation of any integer, take bitwise complement and then add one!
 $$\neg x + 1 = -x$$

Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - Sign-and-magnitude: 10000001
 Use the MSB for + or -, and the other bits to give magnitude
 (Unfortunate side effect: there are two representations of 0!)

Two’s Complement Arithmetic

- The same addition procedure works for both unsigned and two’s complement integers
 - Simplifies hardware: only one adder needed
 - Algorithm: simple addition, discard the highest carry bit
 - Called “modular” addition: result is sum modulo 2^W

- Examples:
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0100</td>
<td>+ 3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>= 7</td>
</tr>
<tr>
<td>-4</td>
<td>1100</td>
<td>+ 3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>- 4</td>
</tr>
<tr>
<td>- 4</td>
<td>1100</td>
<td>1</td>
</tr>
<tr>
<td>- 4</td>
<td>1100</td>
<td>drop carry</td>
</tr>
<tr>
<td>- 1</td>
<td>1111</td>
<td></td>
</tr>
</tbody>
</table>
Two’s Complement

Why does it work?
- Put another way: given the bit representation of a positive integer, we want the negative bit representation to always sum to 0 (ignoring the carry-out bit) when added to the positive representation.
- This turns out to be the *bitwise complement plus one*.
 - What should the 8-bit representation of -1 be?
 - (we want whichever bit string gives the right result)
 - \[
 \begin{array}{c}
 00000000 \\
 +\text{????????} \\
 \hline
 00000000
 \end{array}
 \]
- What should the 8-bit representation of -1 be?
 - (we want whichever bit string gives the right result)
 - \[
 \begin{array}{c}
 00000000 \\
 +\text{11111111} \\
 \hline
 00000000
 \end{array}
 \]
- What should the 8-bit representation of -1 be?
 - (we want whichever bit string gives the right result)
 - \[
 \begin{array}{c}
 00000000 \\
 +\text{11111111} \\
 \hline
 00000000
 \end{array}
 \]
Same W bits interpreted as signed vs. unsigned:

- Two's complement (signed) addition: x and y are W bits wide

Unsigned Values
- $U_{\text{Min}} = 0$
- $U_{\text{Max}} = 2^w - 1$

Two’s Complement Values
- $T_{\text{Min}} = -2^{w-1}$
- $T_{\text{Max}} = 2^{w-1} - 1$

Observations
- $|T_{\text{Min}}| = T_{\text{Max}} + 1$
- Asymmetric range
- $U_{\text{Max}} = 2 \times T_{\text{Max}} + 1$

C Programming
- #include <limits.h>
- Declares constants, e.g.: ULONG_MAX, LONG_MAX, LONG_MIN
- Values are platform specific
- See: /usr/include/limits.h on Linux

Values for different word sizes:

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>U_{Max}</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>T_{Max}</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>T_{Min}</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

Signed vs. Unsigned in C

Constants
- By default are considered to be signed integers
- Use "U" suffix to force unsigned:
 - 0U, 0x4294967259U

Values to remember:

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{Max}</td>
<td>65,535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>T_{Max}</td>
<td>32,767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>T_{Min}</td>
<td>-32,768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>0F FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Signed vs. Unsigned in C

- **Casting**
 - int tx, ty;
 - unsigned ux, uy;
 - Explicit casting between signed & unsigned:
 - tx = (int) ux;
 - uy = (unsigned) ty;
 - Implicit casting also occurs via assignments and function calls:
 - tx = ux;
 - uy = ty;
 - The gcc flag `-Wsign-conversion` produces warnings for implicit casts, but `-Wall` does not!
 - How does casting between signed and unsigned work – what values are going to be produced?
 - *Bits are unchanged*, just interpreted differently!

Shift Operations

- **Left shift:** x << y
 - Shift bit-vector x left by y positions
 - Throw away extra bits on left
 - Fill with 0s on right
 - Equivalent to multiplying by 2^y (if no bits lost)
- **Right shift:** x >> y
 - Shift bit-vector x right by y positions
 - Throw away extra bits on right
 - Logical shift (for unsigned values)
 - Fill with 0s on left
 - Arithmetic shift (for signed values)
 - Replicate most significant bit on left
 - Maintains sign of x
 - Equivalent to dividing by 2^y
 - Correct rounding (towards 0) requires some care with signed numbers

Using Shifts and Masks

- **Extract the 2nd most significant byte of an integer:**
 - First shift, then mask: `(x >> 16) & 0xFF`
 - Argument x
 - 01100010
 - 00111000
 - 00011000
 - Logical >> 2
 - 00011000
 - Arithmetic >> 2
 - 00011000

- **Extract the sign bit of a signed integer:**
 - `(x >> 31) & 1` - need the “& 1” to clear out all other bits except LSB

- **Conditionals as Boolean expressions (assuming x is 0 or 1)**
 - if (x) a=y else a=z; which is the same as a = x ? y : z;
 - Can be re-written (assuming arithmetic right shift) as:
 - a = ((x << 31) >> 31) & y + ((x) << 31) >> 31) & z;

Casting Surprises

- **Expression Evaluation**
 - If you mix signed and unsigned in a single expression, then
 - signed values implicitly cast to unsigned
 - Including comparison operations `<=, >=`:
 - Examples for W = 32: `TMIN = 2,147,483,648` `TMAX = 2,147,483,647`
 - Constant_1 Constant_2 Relation Evaluation
 - 0 0U == unsigned
 - -1 0 < signed
 - -1 0U > unsigned
 - 2147483647 -2147483648 > unsigned
 - 2147483647 < unsigned
 - (unsigned)-1 2 > unsigned
 - 2147483647U 2 < unsigned
 - (int) 2147483648U > signed
Sign Extension

Task:
- Given w-bit signed integer \(x \)
- Convert it to \(w+k \)-bit integer with same value

Rule:
- Make \(k \) copies of sign bit:
 \[X' = x_{w-1}, \ldots, x_{w-1}, x_{w-2}, \ldots, x_0 \]

Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>12345</td>
<td>00000000 01101101</td>
</tr>
<tr>
<td>lx</td>
<td>0000 30 39</td>
<td>00000000 00000000 00110000 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-12345</td>
<td>FF CF C7</td>
</tr>
<tr>
<td>iy</td>
<td>-12345</td>
<td>11111111 11111111 11001111 11000111</td>
</tr>
</tbody>
</table>