CSE 351: Week 3

Tom Bergan, TA
Today

• Questions on Lab 1 or Hw 1?
• Floating point
• Lab 2 quickstart
The most important facts about floating-point numbers

• They are approximate

• Smaller numbers are more precise
 - think significant digits
 - I’ll show you want I mean
Floating point

When you run this code

```c
float x = 1.3;
printf("%f\n", x);
printf("%.15\f", x);
```

It prints

```
1.300000
1.299999952316284
```
Floating point

When you run this code

```c
float accountBalance = 1.30;
printf("%f\n", x);
printf("%.15f", x);
```

It prints

```
1.300000
1.299999952316284
```

probably not a good idea

- instead, maybe use:
 - “binary-coded decimal” or
 - “densely packed decimal”
Floating point

This code computes 1.3×10, right?

```c
float x = 1.3;
for(int i=0; i < 9; ++9)
    x += 1.3;
if (x == 13.0)
    printf("same!\n");
else
    printf("different!: %.15f\n", x);
```

Not exactly ... it prints:

different!: 13.00000000953674316
Floating point

Here’s a big number

```c
float x = (float)((uint64_t)1 << 63);
printf("%f\n", x);
printf("%.15f\n", x);
```

We can represent x precisely! (it’s a power of 2)

The code above prints

- 9223372036854775808.000000
- 9223372036854775808.0000000000000000
Floating point

Now let’s add a small number to a big number

```c
float x = (float)((uint64_t)1 << 63);
x += 0.25;
printf("%.15f\n", x);
```

The 0.25 disappears:

```
9223372036854775808.0000000000000000
```
Floating point

Doubles are more precise than floats

```c
float x = 0.1; // 32-bit floating point
double z = 0.1; // 64-bit floating point
printf("%.30f\n", x);
printf("%.30f\n", x);
```

But still approximate ... the above code prints:

```
0.1000000001490116119384765625000
0.100000000000000005551115123126
```
Floating point

Floating point inaccuracy is hard to reason about

- how much error does ‘+’ introduce?
 - this is a hard numerical analysis problem
- compilers make this problem even harder
 - changing \((x \times 1.3 + y \times 1.3)\) to \(1.3 \times (x + y)\) could produce a different result

See the work of William Kahn for the gory details

www.cs.berkely.edu/~wkahan
(Turing award winner for defining IEEE floating point numbers)
Today

• Questions on Lab 1 or Hw 1?

• Floating point

• Lab 2 quickstart

Demo