Today’s Topics

- Representation of integers: unsigned and signed
- Casting
- Arithmetic and shifting
- Sign extension
Encoding Integers

- The hardware (and C) supports two flavors of integers:
 - unsigned – only the non-negatives
 - signed – both negatives and non-negatives

- There are only 2^w distinct bit patterns of W bits, so...
 - Can't represent all the integers
 - Unsigned values are 0 ... 2^w-1
 - Signed values are -2^{w-1} ... $2^{w-1}-1$
Unsigned Integers

- Unsigned values are just what you expect
 - $b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + b_52^5 + \ldots + b_12^1 + b_02^0$
 - Interesting aside: $1 + 2 + 4 + 8 + \ldots + 2^{N-1} = 2^N - 1$

- You add/subtract them using the normal “carry/borrow” rules, just in binary

- An important use of unsigned integers in C is pointers
 - There are no negative memory addresses
Signed Integers

- Let's do the natural thing for the positives
 - They correspond to the unsigned integers of the same value
 - Example (8 bits): 0x00 = 0, 0x01 = 1, ..., 0x7F = 127

- But, we need to let about half of them be negative
 - Use the high order bit to indicate 'negative'
 - Call it “the sign bit”
 - Examples (8 bits):
 - 0x00 = 00000000\(_2\) is non-negative, because the sign bit is 0
 - 0x7F = 01111111\(_2\) is non-negative
 - 0x80 = 10000000\(_2\) is negative
Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - Possibility 1: 10000001₂
 Use the MSB for “+ or -”, and the other bits to give magnitude
Sign-and-Magnitude Negatives

How should we represent -1 in binary?

- Possibility 1: \(10000001_2\)
 Use the MSB for “+ or -”, and the other bits to give magnitude
 (Unfortunate side effect: there are two representations of 0!)

![Diagram showing binary representations of integers from -7 to +7]
Sign-and-Magnitude Negatives

How should we represent -1 in binary?

- Possibility 1: 10000001₂
 Use the MSB for “+ or -”, and the other bits to give magnitude
 Another problem: math is cumbersome
- 4 − 3 ≠ 4 + (-3)
Ones’ Complement Negatives

How should we represent -1 in binary?

- Possibility 2: 11111110_2

 Negative numbers: bitwise complements of positive numbers

 It would be handy if we could use the same hardware adder to add signed integers as unsigned
Ones’ Complement Negatives

How should we represent -1 in binary?

- Possibility 2: 11111110₂
 Negative numbers: bitwise complements of positive numbers

- Solves the arithmetic problem

<table>
<thead>
<tr>
<th>Add</th>
<th>Invert, add, add carry</th>
<th>Invert and add</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0100</td>
<td>-4 1011</td>
</tr>
<tr>
<td>+ 3</td>
<td>+ 0011</td>
<td>+ 3 + 0011</td>
</tr>
<tr>
<td>= 7</td>
<td>= 0111</td>
<td>= 1 10000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>add carry: +1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= 0001</td>
</tr>
</tbody>
</table>

end-around carry
Ones’ Complement Negatives

How should we represent -1 in binary?

- Possibility 2: 11111110_2
 Negative numbers: bitwise complements of positive numbers
 Use the same hardware adder to add signed integers as unsigned (but we have to keep track of the end-around carry bit)

- Why does it work?
- The ones’ complement of a 4-bit positive number y is $1111_2 - y$
 - $0111 \equiv 7_{10}$
 - $1111_2 - 0111_2 = 1000_2 \equiv -7_{10}$
 - 1111_2 is 1 less than $10000_2 = 2^4 - 1$
 - $-y$ is represented by $(2^4 - 1) - y$
One’s Complement Negatives

How should we represent -1 in binary?

- Possibility 2: 11111110₂
 Negative numbers: bitwise complements of positive numbers
 (But there are still two representations of 0!)
Two’s Complement Negatives

- How should we represent -1 in binary?
 - Possibility 3: 1111111_2
 Bitwise complement plus one
 (Only one zero)
Two’s Complement Negatives

How should we represent -1 in binary?

- Possibility 3: \(11111111_2\)
 Bitwise complement plus one
 (Only one zero)

- Simplifies arithmetic
 Use the same hardware adder to add signed integers as unsigned
 (simple addition; discard the highest carry bit)

<table>
<thead>
<tr>
<th>Add</th>
<th>Invert and add</th>
<th>Invert and add</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0100</td>
<td>-4</td>
</tr>
<tr>
<td>+ 3</td>
<td>+ 0011</td>
<td>+ 3</td>
</tr>
<tr>
<td>= 7</td>
<td>= 0111</td>
<td>= 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>drop carry = 0001</td>
</tr>
</tbody>
</table>
Two’s Complement Negatives

How should we represent -1 in binary?

- Two’s complement: Bitwise complement plus one

Why does it work?

- Recall: The ones’ complement of a b-bit positive number y is $(2^b - 1) - y$
- Two’s complement adds one to the bitwise complement, thus, $-y$ is $2^b - y$
 - $-y$ and $2^b - y$ are equal mod 2^b
 (have the same remainder when divided by 2^b)
 - Ignoring carries is equivalent to doing arithmetic mod 2^b
Two’s Complement Negatives

- How should we represent -1 in binary?
 - Two’s complement: Bitwise complement plus one

- What should the 8-bit representation of -1 be?
 - 00000001
 - +????????? (want whichever bit string gives right result)
 - 00000000

- 00000010 00000011
 - +???????? +????????
 - 00000000 00000000
Unsigned & Signed Numeric Values

<table>
<thead>
<tr>
<th>X</th>
<th>Unsigned</th>
<th>Signed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>

- Both signed and unsigned integers have limits
 - If you compute a number that is too big, you wrap: $6 + 4 = \ ?$ $15U + 2U = \ ?$
 - If you compute a number that is too small, you wrap: $-7 - 3 = \ ?$ $0U - 2U = \ ?$
 - Answers are only correct mod 2^b
- The CPU may be capable of “throwing an exception” for overflow on signed values
 - It won't for unsigned
- But C and Java just cruise along silently when overflow occurs...
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

Integers

02 April 2012

```
+16
```

```
= 
```

Integers
Numeric Ranges

- **Unsigned Values**
 - $U_{\text{Min}} = 0$
 - 000...0
 - $U_{\text{Max}} = 2^w - 1$
 - 111...1

- **Two’s Complement Values**
 - $T_{\text{Min}} = -2^{w-1}$
 - 100...0
 - $T_{\text{Max}} = 2^{w-1} - 1$
 - 011...1

- **Other Values**
 - Minus 1
 - 111...1 0xFFFFFFFF (32 bits)

Values for $W = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>Tmax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th></th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>UMax</td>
<td>255</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
</tr>
</tbody>
</table>

- **Observations**
 - $|Tmin| = Tmax + 1$
 - Asymmetric range
 - $Umax = 2 * Tmax + 1$

- **C Programming**
 - `#include <limits.h>`
 - Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
 - Values platform specific
Conversion Visualized

2’s Comp. → Unsigned

- Ordering Inversion
- Negative → Big Positive

2’s Complement Range

Unsigned Range

TMax
0
–2
–1
0
TMax
UMax
UMax – 1
TMax + 1
TMax
Signed vs. Unsigned in C

- **Constants**
 - By default are considered to be signed integers
 - Unsigned if have “U” as suffix
 - 0U, 4294967259U

- **Casting**
 - `int tx, ty;`
 - `unsigned ux, uy;`
 - Explicit casting between signed & unsigned same as U2T and T2U
 - `tx = (int) ux;`
 - `uy = (unsigned) ty;`
 - Implicit casting also occurs via assignments and procedure calls
 - `tx = ux;`
 - `uy = ty;`
Casting Surprises

Expression Evaluation

- If you mix unsigned and signed in a single expression, then *signed values implicitly cast to unsigned*
- Including comparison operations `<`, `>`, `==`, `<=`, `>=`

Examples for $W = 32$:

<table>
<thead>
<tr>
<th>Constant$_1$</th>
<th>Constant$_2$</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483647-1</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483647-1</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned)-1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Shift Operations

- Left shift: $x << y$
 - Shift bit-vector x left by y positions
 - Throw away extra bits on left
 - Fill with 0s on right
 - Multiply by 2^{**y}

- Right shift: $x >> y$
 - Shift bit-vector x right by y positions
 - Throw away extra bits on right
 - Logical shift (for unsigned)
 - Fill with 0s on left
 - Arithmetic shift (for signed)
 - Replicate most significant bit on left
 - Maintain sign of x
 - Divide by 2^{**y}
 - Correct truncation (towards 0) requires some care with signed numbers

<table>
<thead>
<tr>
<th>Argument x</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<< 3$</td>
<td>00010000</td>
</tr>
<tr>
<td>Logical $>> 2$</td>
<td>00011000</td>
</tr>
<tr>
<td>Arithmetic $>> 2$</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument x</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<< 3$</td>
<td>00010000</td>
</tr>
<tr>
<td>Logical $>> 2$</td>
<td>00101000</td>
</tr>
<tr>
<td>Arithmetic $>> 2$</td>
<td>11101000</td>
</tr>
</tbody>
</table>

Undefined behavior when $y < 0$ or $y \geq$ word_size
Using Shifts and Masks

- **Extract 2nd most significant byte of an integer**
 - First shift: \(x >> (2 \times 8) \)
 - Then mask: \((x >> 16) \& 0xFF\)

<table>
<thead>
<tr>
<th></th>
<th>01100001</th>
<th>01100010</th>
<th>01100111</th>
<th>01100100</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
<td>01100010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x >> 16</td>
<td>00000000</td>
<td>00000000</td>
<td>01100011</td>
<td>01100100</td>
</tr>
<tr>
<td>(x >> 16) & 0xFF</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>11111111</td>
</tr>
<tr>
<td></td>
<td>00000000</td>
<td>00000000</td>
<td>01100010</td>
<td></td>
</tr>
</tbody>
</table>

- **Extracting the sign bit**
 - \((x >> 31) \& 1\) - need the “& 1” to clear out all other bits except LSB

- **Conditionals as Boolean expressions (assuming x is 0 or 1)**
 - if \((x) a=y \) else \(a=z;\) which is the same as \(a = x ? y : z;\)
 - Can be re-written as: \(a = ((x << 31) >> 31) \& y + (!x << 31) >> 31) \& z;\)
Sign Extension

- **Task:**
 - Given w-bit signed integer x
 - Convert it to w+k-bit integer with same value

- **Rule:**
 - Make k copies of sign bit:
 - $X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0$

\[\begin{array}{c}
X' \\
\downarrow \\
X \\
\uparrow \\
\end{array} \quad \begin{array}{cc}
k & w
\end{array} \quad \begin{array}{c}
X' \\
\downarrow \\
X \\
\uparrow \\
\end{array} \quad \begin{array}{cc}
k & w
\end{array} \]
Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension

```c
short int x =  12345;
int      ix = (int) x;
short int y = -12345;
int      iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>12345</td>
<td>30 39</td>
<td>00110000 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>12345</td>
<td>00 00 30 39</td>
<td>00000000 00000000 00110000 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-12345</td>
<td>CF C7</td>
<td>11001111 11000111</td>
</tr>
<tr>
<td>iy</td>
<td>-12345</td>
<td>FF FF CF C7</td>
<td>11111111 11111111 11001111 11000111</td>
</tr>
</tbody>
</table>