Today’s Topics

- Floating Point Numbers
- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

- What is 1011.101?
Fractional Binary Numbers

- **Representation**
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: \(\sum_{k=-j}^{i} b_k \cdot 2^k \)

Fractional Binary Numbers: Examples

- **Value**
 - 5 and 3/4: \(101.11_2 \)
 - 2 and 7/8: \(10.111_2 \)
 - 63/64: \(0.111111_2 \)

- **Observations**
 - Divide by 2 by shifting right
 - Multiply by 2 by shifting left
 - Numbers of the form \(0.11111..._2 \) are just below 1.0
 - \(1/2 + 1/4 + 1/8 + \ldots + 1/2^i + \ldots \rightarrow 1.0 \)
 - Use notation \(1.0 - \varepsilon \)
Representable Numbers

- **Limitation**
 - Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations

- **Value**
 - **Representation**
 - $1/3 \quad 0.0101010101[01]..._2$
 - $1/5 \quad 0.001100110011[0011]..._2$
 - $1/10 \quad 0.0001100110011[0011]..._2$

Fixed Point Representation

- float \rightarrow 32 bits; double \rightarrow 64 bits
- We might try representing fractional binary numbers by picking a fixed place for an implied binary point
 - “fixed point binary numbers”
- Let’s do that, using 8 bit floating point numbers as an example
 - #1: the binary point is between bits 2 and 3
 - $b_7 b_6 b_5 b_4 b_3 [.] b_2 b_1 b_0$
 - #2: the binary point is between bits 4 and 5
 - $b_7 b_6 b_5 [.] b_4 b_3 b_2 b_1 b_0$
 - The position of the binary point affects the range and precision
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers
Fixed Point Pros and Cons

- **Pros**
 - It's simple. The same hardware that does integer arithmetic can do fixed point arithmetic
 - In fact, the programmer can use ints with an implicit fixed point
 - E.g., int balance; // number of pennies in the account
 - Ints are just fixed point numbers with the binary point to the right of \(b_0 \)

- **Cons**
 - There is no good way to pick where the fixed point should be
 - Sometimes you need range, sometimes you need precision
 - The more you have of one, the less of the other

What else could we do?
IEEE Floating Point

- Fixing fixed point: analogous to scientific notation
 - Not 12000000 but 1.2×10^7; not 0.0000012 but 1.2×10^{-6}
- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

- Numerical Form:
 \[(-1)^s \cdot M \cdot 2^E \]
 - Sign bit s determines whether number is negative or positive
 - Significand (mantissa) M normally a fractional value in range $[1.0, 2.0)$
 - Exponent E weights value by power of two

- Encoding
 - MSB s is sign bit s
 - frac field encodes M (but is not equal to M)
 - exp field encodes E (but is not equal to E)
Precisions

- Single precision: 32 bits
 \[
 \begin{array}{c|c|c}
 s & \text{exp} & \text{frac} \\
 1 & 8 & 23 \\
 \end{array}
 \]

- Double precision: 64 bits
 \[
 \begin{array}{c|c|c}
 s & \text{exp} & \text{frac} \\
 1 & 11 & 52 \\
 \end{array}
 \]

- Extended precision: 80 bits (Intel only)
 \[
 \begin{array}{c|c|c}
 s & \text{exp} & \text{frac} \\
 1 & 15 & 63 \text{ or } 64 \\
 \end{array}
 \]

Normalization and Special Values

- “Normalized” means mantissa has form 1.xxxxx
 - 0.011 \times 2^5 and 1.1 \times 2^3 represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, don't bother to store it

- How do we represent 0.0? How about 1.0/0.0?
Normalization and Special Values

- “Normalized” means mantissa has form 1.xxxxx
 - 0.011 x 2^5 and 1.1 x 2^3 represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, don’t bother to store it

- Special values:
 - The float value 00...0 represents zero
 - If the exp == 11...1 and the mantissa == 00...0, it represents ±∞
 - E.g., 1.0/0.0 = -1.0/-0.0 = +∞, 1.0/-0.0 = -1.0/0.0 = -∞
 - If the exp == 11...1 and the mantissa != 00...0, it represents NaN
 - “Not a Number”
 - Results from operations with undefined result
 - E.g., sqrt(-1), ∞ - ∞, ∞ * 0

Normalized Values

- Condition: exp ≠ 000...0 and exp ≠ 111...1

- Exponent coded as biased value: exp = E + Bias
 - exp is an unsigned value ranging from 1 to 2^e-2
 - Allows negative values for E (= exp – Bias)
 - Bias = 2^{e-1} - 1, where e is number of exponent bits (bits in exp)
 - Single precision: 127 (exp: 1...254, E: -126...127)
 - Double precision: 1023 (exp: 1...2046, E: -1022...1023)

- Significand coded with implied leading 1: M = 1.xxx...x
 - xxx...x: bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when 111...1 (M = 2.0 – ε)
 - Get extra leading bit for “free”
Normalized Encoding Example

- **Value**: Float $F = 12345.0$;
 - $12345_{10} = 11000000111001_2$
 - $= 1.1000000111001 \times 2^{13}$

- **Significand**
 - $M = 1.1000000111001$
 - $\frac{frac}{=} = 10000001110010000000000_2$

- **Exponent**
 - $E = 13$
 - $Bias = 127$
 - $exp = 140 = 10001100_2$

- **Result**:

 $\begin{bmatrix}
 \text{s} & \text{exp} & \text{frac} \\
 0 & 10001100 & 100000011100100000000000
 \end{bmatrix}$

How do we do operations?

- **Is representation exact?**
- **How are the operations carried out?**
Floating Point Operations: Basic Idea

- \(x + \varepsilon y = \text{Round}(x + y) \)
- \(x * \varepsilon y = \text{Round}(x * y) \)

Basic idea
- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Floating Point Multiplication

\((-1)^{s_1} M_1 \ 2^{E_1} \times (-1)^{s_2} M_2 \ 2^{E_2}\)

Exact Result: \((-1)^s M \ 2^E\)
- Sign \(s\): \(s_1 \oplus s_2\) \(\text{// xor of } s_1 \text{ and } s_2\)
- Significand \(M\): \(M_1 \times M_2\)
- Exponent \(E\): \(E_1 + E_2\)

Fixing
- If \(M \geq 2\), shift \(M\) right, increment \(E\)
- If \(E\) out of range, overflow
- Round \(M\) to fit frac precision
Floating Point Addition

\[(-1)^{s_1} M_1 \cdot 2^{E_1} + (-1)^{s_2} M_2 \cdot 2^{E_2} \]
Assume \(E_1 > E_2 \)

- **Exact Result:** \((-1)^s M \cdot 2^E\)
 - Sign \(s \), significand \(M \):
 - Result of signed align & add
 - Exponent \(E \): \(E_1 \)

- **Fixing**
 - if \(M \geq 2 \), shift \(M \) right, increment \(E \)
 - if \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)
 - Overflow if \(E \) out of range
 - Round \(M \) to fit frac precision

Hmm... if we round at every operation...
Mathematical Properties of FP Operations

- Not really associative or distributive due to rounding
- Infinities and NaNs cause issues
- Overflow and infinity

Floating Point in C

- C Guarantees Two Levels
 float single precision
 double double precision

- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - Double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: generally sets to Tmin
 - int → double
 - Exact conversion, as long as int has ≤ 53-bit word size
 - int → float
 - Will round according to rounding mode
Memory Referencing Bug

double fun(int i)
{
 volatile double d[1] = {3.14};
 volatile long int a[2];
 a[i] = 1073741824; /* Possibly out of bounds */
 return d[0];
}

fun(0) –> 3.14
fun(1) –> 3.14
fun(2) –> 3.1399998664856
fun(3) –> 2.00000061035156
fun(4) –> 3.14, then segmentation fault

Explanation:

Replicating 3.14 as a Double FP Number

- 1073741824 = 0100 0000 0000 0000 0000 0000 0000 0000
- 3.14 = 11.0010 0011 1101 0111 0000 1010 000...
- \((-1)^s \times M \times 2^E\)
 - $s = 0$ encoded as 0
 - $M = 1.1001 0001 1110 1011 1000 \ldots$ (leading 1 left out)
 - $E = 1$ encoded as 1024 (with bias)

\[
\begin{array}{c|c|c}
 s & \text{exp (11)} & \text{frac (first 20 bits)} \\
 0 & 100 0000 0000 & 1001 0001 1110 1011 1000 \\
\end{array}
\]

\[
\text{frac (the other 32 bits)}
\]

0101 0000 ...
Memory Referencing Bug (Revisited)

```c
double fun(int i)
{
    volatile double d[1] = {3.14};
    volatile long int a[2];
    a[i] = 1073741824; /* Possibly out of bounds */
    return d[0];
}
```

fun(0) –> 3.14
fun(1) –> 3.14
fun(2) –> 3.1399998664856
fun(3) –> 2.00000061035156
fun(4) –> 3.14, then segmentation fault

Saved State

<table>
<thead>
<tr>
<th>d7 ... d4</th>
<th>d3 ... d0</th>
<th>a[1]</th>
<th>a[0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100 0000 0000 1001 0001 1110 1011 1000</td>
<td>0100 0000 ...</td>
<td>0101 0000 ...</td>
<td>0100 0000</td>
</tr>
</tbody>
</table>

Location accessed by fun(i)
Memory Referencing Bug (Revisited)

double fun(int i)
{
 volatile double d[1] = {3.14};
 volatile long int a[2];
 a[i] = 1073741824; /* Possibly out of bounds */
 return d[0];
}

fun(0) -> 3.14
fun(1) -> 3.14
fun(2) -> 3.1399998664856
fun(3) -> 2.00000061035156
fun(4) -> 3.14, then segmentation fault

Saved State

d7 ... d4	0100 0000 0000 0000 0000 0000 0000	4
d3 ... d0	0101 0000 ...	2
a[1]	0100 0000 0000 0000 0000 0000 0000	1
a[0]	0100 0000 0000 0000 0000 0000 0000	0

Location accessed by fun(i)

Floating Point and the Programmer

#include <stdio.h>

int main(int argc, char* argv[]) {
 float f1 = 1.0;
 float f2 = 0.0;
 int i;
 for (i=0; i<10; i++) {
 f2 += 1.0/10.0;
 }
 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
 printf("f1 = %10.8f\n", f1);
 printf("f2 = %10.8f\n", f2);
 f1 = 1e30;
 f2 = 1e-30;
 float f3 = f1 + f2;
 printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");
 return 0;
}

$./a.out
0x3f800000 0x3f800000
f1 = 1.00000000
f2 = 1.000000119
f1 == f3? yes
Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some “simple fractions” have no exact representation
 - E.g., 0.1
 - Can also lose precision, unlike ints
 - “Every operation gets a slightly wrong result”

- Mathematically equivalent ways of writing an expression may compute different results
 - Violates associativity/distributivity

- NEVER test floating point values for equality!

Additional details

- Denormalized values – to get finer precision near zero
- Tiny floating point example
- Distribution of representable values
- Rounding
Denormalized Values

- **Condition:** \(\text{exp} = 000...0 \)

- **Exponent value:** \(E = \text{exp} - \text{Bias} + 1 \) (instead of \(E = \text{exp} - \text{Bias} \))
- **Significand coded with implied leading 0:** \(M = 0 \). \(\text{xxx...x} \times 2^E \)
 - \(\text{xxx...x} \): bits of \(\text{frac} \)

- **Cases**
 - \(\text{exp} = 000...0, \frac{}{=} = 000...0 \)
 - Represents value 0
 - Note distinct values: +0 and −0 (why?)
 - \(\text{exp} = 000...0, \frac{}{=} \neq 000...0 \)
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

Special Values

- **Condition:** \(\text{exp} = 111...1 \)

- **Case:** \(\text{exp} = 111...1, \frac{}{=} = 000...0 \)
 - Represents value \(\infty \) (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., \(1.0/0.0 = -1.0/-0.0 = +\infty \), \(1.0/-0.0 = -1.0/0.0 = -\infty \)

- **Case:** \(\text{exp} = 111...1, \frac{}{=} \neq 000...0 \)
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., \(\sqrt{-1}, -\infty, \infty \neq 0 \)
Visualization: Floating Point Encodings

Tiny Floating Point Example

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

- **8-bit Floating Point Representation**
 - the sign bit is in the most significant bit.
 - the next four bits are the exponent, with a bias of 7.
 - the last three bits are the \(\text{frac} \)

- **Same general form as IEEE Format**
 - normalized, denormalized
 - representation of 0, NaN, infinity
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>s exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0000 000</td>
<td>-6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 0000 001</td>
<td>-6</td>
<td>1</td>
<td>1/8*1/64 = 1/512 closest to zero</td>
</tr>
<tr>
<td>0 0000 010</td>
<td>-6</td>
<td>2</td>
<td>2/8*1/64 = 2/512</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0000 110</td>
<td>-6</td>
<td>6</td>
<td>6/8*1/64 = 6/512 largest denorm</td>
</tr>
<tr>
<td>0 0000 111</td>
<td>-6</td>
<td>7</td>
<td>7/8*1/64 = 7/512</td>
</tr>
<tr>
<td>0 0001 000</td>
<td>-6</td>
<td>8</td>
<td>8/8*1/64 = 8/512 smallest norm</td>
</tr>
<tr>
<td>0 0001 001</td>
<td>-6</td>
<td>9</td>
<td>9/8*1/64 = 9/512</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0110 110</td>
<td>-1</td>
<td>14</td>
<td>14/8*1/2 = 14/16 closest to 1 below</td>
</tr>
<tr>
<td>0 0110 111</td>
<td>-1</td>
<td>15</td>
<td>15/8*1/2 = 15/16</td>
</tr>
<tr>
<td>0 0111 000</td>
<td>0</td>
<td>8</td>
<td>8/8*1 = 1</td>
</tr>
<tr>
<td>0 0111 001</td>
<td>0</td>
<td>9</td>
<td>9/8*1 = 9/8 closest to 1 above</td>
</tr>
<tr>
<td>0 0111 010</td>
<td>0</td>
<td>10</td>
<td>10/8*1 = 10/8</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1110 110</td>
<td>7</td>
<td>14</td>
<td>14/8*128 = 224 largest norm</td>
</tr>
<tr>
<td>0 1110 111</td>
<td>7</td>
<td>15</td>
<td>15/8*128 = 240</td>
</tr>
<tr>
<td>0 1111 000</td>
<td>n/a</td>
<td>inf</td>
<td></td>
</tr>
</tbody>
</table>

Distribution of Values

- **6-bit IEEE-like format**
 - \(e = 3 \) exponent bits
 - \(f = 2 \) fraction bits
 - Bias is \(2^{3-1} - 1 = 3 \)

- Notice how the distribution gets denser toward zero.
Distribution of Values (close-up view)

- **6-bit IEEE-like format**
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - Bias is 3

```
<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
```

![Distribution of Values](image)

Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00...00</td>
<td>00...01</td>
</tr>
<tr>
<td>Single</td>
<td>1.4×10^{-45}</td>
<td></td>
</tr>
<tr>
<td>Double</td>
<td>4.9×10^{-324}</td>
<td></td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>00...00</td>
<td>11...11</td>
</tr>
<tr>
<td>Single</td>
<td>1.18×10^{-38}</td>
<td></td>
</tr>
<tr>
<td>Double</td>
<td>2.2×10^{-308}</td>
<td></td>
</tr>
<tr>
<td>Smallest Pos. Norm.</td>
<td>00...01</td>
<td>00...00</td>
</tr>
<tr>
<td></td>
<td>Just larger than largest denormalized</td>
<td></td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
<td>00...00</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...10</td>
<td>11...11</td>
</tr>
<tr>
<td>Single</td>
<td>3.4×10^{38}</td>
<td></td>
</tr>
<tr>
<td>Double</td>
<td>1.8×10^{308}</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Numeric Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>Zero</td>
</tr>
<tr>
<td>$2^{-23,52} \times 2^{-126,1022}$</td>
<td>Single, Double</td>
</tr>
<tr>
<td>$(1.0 - \epsilon) \times 2^{-126,1022}$</td>
<td>Largest Denormalized</td>
</tr>
<tr>
<td>$1.0 \times 2^{-126,1022}$</td>
<td>Smallest Pos. Norm.</td>
</tr>
<tr>
<td>1.0</td>
<td>One</td>
</tr>
<tr>
<td>$(2.0 - \epsilon) \times 2^{127,1023}$</td>
<td>Largest Normalized</td>
</tr>
</tbody>
</table>

Autumn 2012

Three Floating Point Numbers
Special Properties of Encoding

- **Floating point zero (0^+) exactly the same bits as integer zero**
 - All bits = 0

- **Can (Almost) Use Unsigned Integer Comparison**
 - Must first compare sign bits
 - Must consider $0^- = 0^+ = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Rounding

- **Rounding Modes (illustrate with $\$$ rounding)**

<table>
<thead>
<tr>
<th>Value</th>
<th>$$1.40$</th>
<th>$$1.60$</th>
<th>$$1.50$</th>
<th>$$2.50$</th>
<th>$-$1.50$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towards zero</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>Round down ($-\infty$)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>Round up ($+\infty$)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>Nearest (default)</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>-2</td>
</tr>
</tbody>
</table>

- **What are the advantages of the modes?**
Closer Look at Round-To-Nearest

- Default Rounding Mode
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under-estimated

- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth
 - 1.2349999 1.23 (Less than half way)
 - 1.2350001 1.24 (Greater than half way)
 - 1.2350000 1.24 (Half way—round up)
 - 1.2450000 1.24 (Half way—round down)

Rounding Binary Numbers

- Binary Fractional Numbers
 - “Half way” when bits to right of rounding position = \(100\ldots2\)

- Examples
 - Round to nearest 1/4 (2 bits right of binary point)
Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.001102	10.012	(>1/2—up)	2 1/4
2 7/8	10.111002	11.002	(1/2—up)	3
2 5/8	10.101002	10.102	(1/2—down)	2 1/2