Today’s Topics

- Representation of integers: unsigned and signed
- Casting
- Arithmetic and shifting
- Sign extension

But before we get to integers....

- How about encoding a standard deck of playing cards?
- 52 cards in 4 suits
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?
Some options

- 52 cards – 52 bits with bit corresponding to card set to 1

 - One-hot encoding

- 4 bits for suit, 13 bits for card value – 17 bits with 2 set to 1

 - Two-hot(?) encoding

Some options

- Binary encoding of all 52 cards – only 6 bits needed

 - Fits in one byte

- Binary encoding of suit (2 bits) and value (4 bits) separately

 - Also fits in one byte, easier to do value comparisons
Some basic operations

- **Checking two cards are of the same suit**
  ```
  char array[4]; // represents a 5 card hand
  char card1, card2; // two cards to compare
  card1 = array[0];
  card2 = array[1];
  ...
  if sameSuitP(card1, card2) {
    ...
  }
  ```

  ```
  bool sameSuitP(char card1, char card2) {
    return !(card1 & SUIT_MASK) ^ (card2 & SUIT_MASK);
  }
  ```

- **Greater value test**
  ```
  char array[4]; // represents a 5 card hand
  char card1, card2; // two cards to compare
  card1 = array[0];
  card2 = array[1];
  ...
  if greaterValue(card1, card2) {
    ...
  }
  ```

  ```
  bool greaterValue(char card1, char card2) {
    return (int)(card1 & VALUE_MASK) > (int)(card2 & VALUE_MASK);
  }
  ```
Encoding Integers

- The hardware (and C) supports two flavors of integers:
 - unsigned – only the non-negatives
 - signed – both negatives and non-negatives

- There are only 2^W distinct bit patterns of W bits, so...
 - Can't represent all the integers
 - Unsigned values are $0 \ldots 2^{W-1}$
 - Signed values are $-2^{W-1} \ldots 2^{W-1}-1$

Unsigned Integers

- Unsigned values are just what you expect
 - $b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + b_52^5 + \ldots + b_12^1 + b_02^0$
 - Interesting aside: $1+2+4+8+\ldots+2^{N-1} = 2^N - 1$

- You add/subtract them using the normal “carry/borrow” rules, just in binary

- An important use of unsigned integers in C is pointers
 - There are no negative memory addresses
Signed Integers

- Let’s do the natural thing for the positives
 - They correspond to the unsigned integers of the same value
 - Example (8 bits): 0x00 = 0, 0x01 = 1, ..., 0x7F = 127
- But, we need to let about half of them be negative
 - Use the high order bit to indicate 'negative'
 - Call it “the sign bit”
 - Examples (8 bits):
 - 0x00 = 00000000₂ is non-negative, because the sign bit is 0
 - 0x7F = 01111111₂ is non-negative
 - 0x80 = 10000000₂ is negative

Sign-and-Magnitude Negatives

- How should we represent -1 in binary?
 - Possibility 1: 10000001₂
 - Use the MSB for “+ or -”, and the other bits to give magnitude
Sign-and-Magnitude Negatives

How should we represent -1 in binary?

- Possibility 1: 10000001
 Use the MSB for “+” or “-”, and the other bits to give magnitude
 (Unfortunate side effect: there are two representations of 0!)

Another problem: math is cumbersome

- 4 – 3 \neq 4 + (-3)
Ones’ Complement Negatives

- How should we represent -1 in binary?
 - Possibility 2: 11111110$_2$
 Negative numbers: bitwise complements of positive numbers
 It would be handy if we could use the same hardware adder to add
 signed integers as unsigned

![Diagram showing binary representations of numbers.](attachment:binary_diagram.png)
Two’s Complement Negatives

How should we represent -1 in binary?
- Possibility 3: 1111111_2
 Bitwise complement plus one
 (Only one zero)

- Simplifies arithmetic
 Use the same hardware adder to add signed integers as unsigned
 (simple addition; discard the highest carry bit)

<table>
<thead>
<tr>
<th>Add</th>
<th>Invert and add</th>
<th>Invert and add</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0100</td>
<td>-4 1100</td>
</tr>
<tr>
<td>+ 3</td>
<td>+ 0011</td>
<td>+ 3 + 0011</td>
</tr>
<tr>
<td>= 7</td>
<td>= 0111</td>
<td>= 1 1001</td>
</tr>
<tr>
<td></td>
<td>drop carry</td>
<td>= 0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= 1 1111</td>
</tr>
</tbody>
</table>
Two’s Complement Negatives

How should we represent -1 in binary?
- Two’s complement: Bitwise complement plus one

Why does it work?
- Recall: The ones’ complement of a b-bit positive number \(y \) is \((2^b - 1) - y \)
- Two’s complement adds one to the bitwise complement, thus, \(-y \) is \(2^b - y \)
 - \(-y \) and \(2^b - y \) are equal mod \(2^b \)
 - have the same remainder when divided by \(2^b \)
 - Ignoring carries is equivalent to doing arithmetic mod \(2^b \)

What should the 8-bit representation of -1 be?

00000001
+????????
00000000

00000010
+????????
00000000

00000011
+????????
00000000
Unsigned & Signed Numeric Values

- Both signed and unsigned integers have limits
 - If you compute a number that is too big, you wrap: \(6 + 4 = ? \) \(15U + 2U = ? \)
 - If you compute a number that is too small, you wrap: \(-7 - 3 = ? \) \(0U - 2U = ? \)
 - Answers are only correct \(\mod 2^b \)

- The CPU may be capable of “throwing an exception” for overflow on signed values
 - It won’t for unsigned
- But C and Java just cruise along silently when overflow occurs...

Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Numeric Ranges

- **Unsigned Values**
 - $U_{\text{Min}} = 0$
 - 000...0
 - $U_{\text{Max}} = 2^w - 1$
 - 111...1

- **Two’s Complement Values**
 - $T_{\text{Min}} = -2^{w-1}$
 - 100...0
 - $T_{\text{Max}} = 2^{w-1} - 1$
 - 011...1

- **Other Values**
 - Minus 1
 - 111...1 0xFFFFFFFF (32 bits)

Values for $W = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{Max}</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>T_{Max}</td>
<td>32767</td>
<td>FF FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>T_{Min}</td>
<td>-32768</td>
<td>00 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>

Values for Different Word Sizes

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{Max}</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>T_{Max}</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>T_{Min}</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

- **Observations**
 - $|T_{\text{Min}}| = T_{\text{Max}} + 1$
 - Asymmetric range
 - $U_{\text{Max}} = 2 \times T_{\text{Max}} + 1$

- **C Programming**
 - `#include <limits.h>`
 - Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
 - Values platform specific
Conversion Visualized

- **2’s Comp. → Unsigned**
 - Ordering Inversion
 - Negative → Big Positive

Signed vs. Unsigned in C

- **Constants**
 - By default are considered to be signed integers
 - Unsigned if have “U” as suffix
 - 0U, 4294967259U
- **Casting**
 - `int tx, ty;`
 - `unsigned ux, uy;`
 - Explicit casting between signed & unsigned
 - `tx = (int) ux;`
 - `uy = (unsigned) ty;`
 - Implicit casting also occurs via assignments and procedure calls
 - `tx = ux;`
 - `uy = ty;`
Casting Surprises

Expression Evaluation

- If you mix unsigned and signed in a single expression, then signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for \(W = 32 \): \(TMIN = -2,147,483,648 \) \(TMAX = 2,147,483,647 \)

<table>
<thead>
<tr>
<th>Constant(_1)</th>
<th>Constant(_2)</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483648</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>(unsigned)-1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>

Shift Operations

- Left shift: \(x << y \)
 - Shift bit-vector x left by y positions
 - Throw away extra bits on left
 - Fill with 0s on right
 - Multiply by \(2^y \)
- Right shift: \(x >> y \)
 - Shift bit-vector x right by y positions
 - Throw away extra bits on right
 - Logical shift (for unsigned)
 - Fill with 0s on left
 - Arithmetic shift (for signed)
 - Replicate most significant bit on left
 - Maintain sign of \(x \)
 - Divide by \(2^y \)
 - Correct truncation (towards 0) requires some care with signed numbers

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Logical (>> 2)</td>
<td>00011000</td>
</tr>
<tr>
<td>Arithmetic (>> 2)</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Logical (>> 2)</td>
<td>00101000</td>
</tr>
<tr>
<td>Arithmetic (>> 2)</td>
<td>11101000</td>
</tr>
</tbody>
</table>

Undefined behavior when \(y < 0 \) or \(y \geq \text{word_size} \)
Using Shifts and Masks

- **Extract 2nd most significant byte of an integer**
 - First shift: \(x >> (2 \times 8) \)
 - Then mask: \((x >> 16) \& 0xFF \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(01100001)</th>
<th>(01100010)</th>
<th>(01100011)</th>
<th>(01100100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x >> 16)</td>
<td>00000000</td>
<td>00000000</td>
<td>01100001</td>
<td>01100010</td>
</tr>
<tr>
<td>((x >> 16) & 0xFF)</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
<td>00000000</td>
</tr>
</tbody>
</table>

- **Extracting the sign bit**
 - \((x >> 31) \& 1 \) - need the “\& 1” to clear out all other bits except LSB

- **Conditionals as Boolean expressions** *(assuming \(x \) is 0 or 1)*
 - if \((x) \) a=y else a=z; which is the same as \(a = x ? y : z \);
 - Can be re-written as: \(a = (x << 31) >> 31 \) & y + (!x << 31) >> 31 & z;

Sign Extension

- **Task:**
 - Given \(w \)-bit signed integer \(x \)
 - Convert it to \(w+k \)-bit integer with same value

- **Rule:**
 - Make \(k \) copies of sign bit:
 - \(X' = x_{w-1}, \ldots, x_{w-1}, x_{w-2}, \ldots, x_0 \)

\[k \] copies of MSB

\[w \]

\[X \]

\[X' \]
Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension

```
short int x = 12345;
int   ix = (int) x;
short int y = -12345;
int   iy = (int) y;
```

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>12345</td>
<td>00110000 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>12345</td>
<td>00 00 30 39 00000000 00000000 00110000 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-12345</td>
<td>CF C7</td>
</tr>
<tr>
<td>iy</td>
<td>-12345</td>
<td>FF FF CF C7 11001111 11000111 11001111 11000111</td>
</tr>
</tbody>
</table>